Image difference

Fouchez

Transien

Examples
Observation

Image

Differen

Introduction

Optimal Ima

Subtraction

Exercice !

Other extension

Image difference

Transient search

Dominique Fouchez

CPPM / Aix Marseille universite/ CNRS/IN2P3

June 12, 2017

Outline

Dominique Fouchez

Transients
Examples
Observation
Exercise

Image Differenc

Introduction
Optimal Image
Subtraction
Exercice!

- Transients
 - Examples
 - Observation
 - Exercice !
- 2 Image Difference
 - Introduction
 - Optimal Image Subtraction
 - Exercice !
 - Other extension and methods

Transients

Dominique Fouchez

Transients

Examples
Observation

Image Difference

Introduction

Optimal Imag Subtraction

Exercice !
Other extensio

Introduction

Transients are of interest for various science topics: Variable stars ,quasars, microlensing, cosmology with supernovae, moving objects ...

Moving Object

Examples

Example of a moving object (Dwarf Planet Beyond Neptune)

Moving Object

Dominique Fouchez

Transier

Examples Observation

Exercice

....

Introduction

Optimal Ima Subtraction

Exercice !

Other extension and methods

Example of a moving object (Dwarf Planet Beyond Neptune) Capture on three visits

Moving Object

Examples

(Dwarf Planet Beyond Neptune) Capture on three visits ... over three hours

Example of a moving object

Microlensing

Dominique Fouchez

Transie

Examples

Observatio Exercice!

Image

Introduction

Optimal Ima Subtraction

Exercice ! Other extensio Result targeting a crowded fields, with a massive star MOA-2016-BLG-227

Figure : left: The star field ; right: The microlensing light curve

Dominique Fouchez

Transient

Examples

Exercice !

Image

Difference

Introduction

Optimal Ima

Exercice !

Other extension

superluminous Type la supernova : evolution of the explosion over 20 days

Host galaxy

Dominique Fouchez

Transient

Examples Observation

Exercice !

Image

Differenc

Introduction
Optimal Imag

Subtraction

Exercice ! Other extension superluminous Type la supernova : evolution of the explosion over 20 days

Explosion observed before maximum luminosity

Dominique Fouchez

Transient

Examples

Exercice

Image

Differenc

Introduction Optimal Imag

Subtraction

Exercice !

Other extension and methods

superluminous Type la supernova : evolution of the explosion over 20 days

Explosion observed before maximum luminosity

Dominique Fouchez

Transient

Examples

Exercice

Image

Difference

Introduction

Ontimal Ima

Subtraction

Exercice !

Other extensi

superluminous Type la supernova : evolution of the explosion over 20 days

Dominique Fouchez

Transient

Examples Observation

Exercice

Image

Differenc

Introduction

Optimal Ima

Subtraction

Other extension

superluminous Type Ia supernova : evolution of the explosion over 20 days

At maximum luminosity

Dominique Fouchez

Transient

Examples Observation

Exercice !

Image

Difference

Introduction

Optimal Ima

Subtraction

Exercice ! Other extension and methods superluminous Type la supernova : evolution of the explosion over 20 days

Watch the PSF variation!

Dominique Fouchez

Transient

Examples

Exercice !

Image

Differenc

Introduction

Optimal Ima

Subtraction

Exercice !

Other extension and methods

superluminous Type la supernova : evolution of the explosion over 20 days

Watch the PSF variation!

Observation

Dominique Fouchez

Transients
Examples
Observation

Difference
Introduction
Optimal Image
Subtraction
Exercice!
Other extension

Observation

Two steps are mandatory: discovery and follow up. A follow up strategy is possible, either with dedicated intrument, pointing to the transient, or with a large field of view instrument with a rolling cadence strategy

Transient Discovery

Dominique Fouchez

Transients
Examples
Observation
Exercise

Image
Difference
Introduction
Optimal Image
Subtraction
Exercice!
Other extensio

Two epochs comparison

The flux of the same sky part is compare , either using a catalog of sources difference or an image difference

Multi epochs comparison

This is an extension a N times the two epoch comparison with the obtention of a time serie for transient candidate : eg the lightcurve

Two epochs comparison

Dominique Fouchez

Transients
Examples
Observation
Exercice!

Image Differenc

Introduction
Optimal Image
Subtraction
Exercice!
Other extension
and methods

Alignment

Geometric and photometric alignment is a necessary step to compare two visits

Catalog comparison

The flux of a catalog of sources from the same part of the sky is computed and after an astronomical match, their difference can be computed. The main problem comes from blended sources Ex: supernova on top of galaxy

Image difference

The flux of two images is subtracted at the pixel level. Prior to a pixel to pixel subtraction, the two images have to be aligned (WCS transformation) and the PSF on both images has to be equalized

Exercice!

Dominique Fouchez

Transients
Examples
Observation
Exercice

Image Differer

Introduction Optimal Imag

Exercice !
Other extensio

Simulate a transient

Make a template image and new image(s) with transient(s) Add basic seeing and noise

Image difference

Dominique Fouchez

Fransients
Examples
Observatio

Difference
Introduction
Optimal Image
Subtraction
Exercice!
Other extensic

Registration

A common sky coordinate has to be found between the two images

PSF matching

An optimal subtraction requires a processing to remove their PSF differences. This is known as PSF-matching the images.

Optimal Image Subtraction (aka Alard-Lupton)

Dominiqu Fouchez

Transients
Examples
Observatio

Image
Difference
Introduction
Optimal Image
Subtraction
Exercice!
Other extension

OIS

This proposal was presented in [AL98] and later improved in [Ala00]. The OIS is based on approxi- mating the PSF of both images as a linear combination of gaussian functions multiplied by high degree polynomials. Such approximation is built from all the sources present in the image (and not only a subset) trying to create the best possible approximation. Then, the given equation is solved using least squares.

Dominique Fouchez

Transients
Examples
Observatio

Image Difference

Optimal Image Subtraction Exercice! Other extension

Method

The principle of the method is to find a convolution kernel (Kernel), that will transform a reference image (Ref) to fit a given image (I).

$$[Ref \otimes Kernel](x, y) = I(x, y)$$

Minimization

The kernel is found by minimizing:

$$\sum ([Ref \otimes Kernel](x_i, y_i) - I(x_i, y_i))^2$$

Dominique Fouchez

Transients Examples Observatio

Difference
Introduction
Optimal Image
Subtraction
Exercice!
Other extension

Kernel linearisation

$$Kernel(u, v) = \sum_{i} a_i K_i(u, v)$$

The Kernel is linearised on a basis of functions.

Kernel gaussian approximation

$$K(u,v) = \sum_{n} e^{(u^2+v^2)/2\sigma_k^2} u_i v_j$$

Sum of gaussian multiply by polynomial (one can use Chebishev)

Dominique Fouchez

Transient Examples

Observation Exercice !

Image Difference

Introduction
Optimal Image

Subtraction
Exercice !

Solving the linear system

We have to solve

$$I = Ca$$

with

$$C_i = [Ref \otimes K_i]$$

Solving normal equation

$$I = Ca$$

$$C^TI = C^TCa$$

of the form b = Ma

Dominique Fouchez

Transients
Examples
Observatio
Exercice

Introduction
Optimal Image
Subtraction
Exercice!
Other extension

System to solve

We have to solve b = Ma, where :

$$M_{ij} = \int [R \otimes K_i](x,y) \frac{[R \otimes K_j](x,y)}{\sigma(x,y)^2} dxdy$$

and

$$B_i = \int I(x, y) \frac{[R \otimes K_i](x, y)}{\sigma(x, y)^2} dxdy$$

(Those equation do take into account the pixel variance σ , demonstration can been found in Becker 2012 arXiv:1202.2902)

Dominique Fouchez

Transients Examples Observation

Image Differenc

Optimal Image

Subtraction `Exercice!

Other extens

Result on crowded field , using space varying kernel (simulation)

Fig. 1. Simulated of crowded field images. On the left is the image with consonant r.or, and on the region of the variations along the Y axis. Note the large amplitude of the PSF variations. A total of 2500 stars has been included in this simulation

On the left is the subtracted image obtained with constant kernel solution. Note the systematic pattern along the Y

Other extensions and methods

Dominiqu Fouchez

Transient Examples

Image

Introduction
Optimal Imag
Subtraction

Other extension and methods

Other extensions and methods

Differents extension of Alard-Lupton by changing the kernel basis or psf determination.

(Zackay et al 2016) method to decorrelated the image obtained afetr kernek convolution

Exercice!

Dominiqu Fouchez

Transier

xamples Observatio

Image

Difference

Optimal Ima

Eversion

Other extension and methods

Subtract your simulated images

Make a simplified kernel base Compute the b and M terms subtract and find your transient