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Outline
• What is FGCM? 

• See Burke, Rykoff+17 http://arxiv.org/abs/
1706.01542 

• Atmosphere and Instrumental Passbands 

• The FGCM Fitting Procedure 

• Calibration Errors 

• LSST
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What is FGCM?
• The “Forward Global Calibration Method” 

• Solve the global calibration problem with a 
physical model of the atmosphere + instrument 

• Picking up on Stubbs & Tonry (2006) 
• Given a set of atmospheric parameters at any 

given time (under photometric conditions) we can 
predict the atmospheric extinction as a function of 
wavelength 
• Also need to know object SED (see e.g., Li+16) 

• Once we know the atmospheric extinction, can 
predict fluxes of all the objects in an exposure
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What is FGCM?
• Two step process 
• Select exposures & stars suitable to obtain 

atmospheric model on nights of the survey 
• Multi-band solution 
• Assume atmospheric parameters vary slowly 

over the night 
• Calibration stars are used to fit the zeropoint for all 

exposures in survey 
• Include chromatic corrections 
• Include non-photometric exposures (with 

increased error!)
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The Atmosphere Model
• Atmospheric transmission can be described with a 

small number of parameters 
• Precipitable water vapor (PWV) 
• Aerosol Optical Depth (AOD) τ and α 

• Ozone (O3) 
• Given zenith distance and barometric 

pressure, compute Rayleigh and O2 using 
MODTRAN
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3.2.3. Aerosol Absorption: e

�(X⌧)

Scattering by aerosols can be more complex, but the corresponding optical depth for a

single particulate species is well-described with two parameters as,

⌧(�) = ⌧

7750

⇥ (�/7750 Å)�↵

. (22)

The normalization ⌧

7750

and optical index ↵ depend on the density, size, and shape of the

aerosol particulate.

Aerosol optical depth, like water vapor, can vary by several percent over hours, so the

calibration measurements and process must account for variations of this magnitude on

these timescales. The aerosol normalization ⌧

7750

is parameterized in a manner similar to

the precipitable water vapor when there is no auxiliary data available, with a linear change

through the night as

⌧

7750

(exposure) = ⌧(nite) + ⌧

s

(nite)⇥ UT(exposure), (23)

where the intercept at UT = 0 (⌧(nite)) and slope (⌧
s

(nite)) are FGCM fit parameters.

For our present modeling, we assume that the aerosols on any given night are dominated

by a single species. Therefore, we require one value for the aerosol optical index (↵) for

each calibratable night.

3.2.4. Atmospheric Fit Parameters

Should I rewrite this in terms of the sub-parameters as well?

The vector of atmospheric parameters used to fit the observed DES data,

~

P

atm ⌘ (O
3

, pwv, ⌧
7750

,↵; bp, zd) (24)



Atmosphere Constituents
• The FGCM standard atmosphere model
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Fit Parameters
• We use PWV from the GPS monitor system 

• With a global multiplicative and additive bias 
• A single-constituent aerosol, with optical depth τ7750 

that varies linearly through the night, and single α 
per night 

• A single value for Ozone each night 
• Plus airmass and site-monitored barometric 

pressure
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Auxiliary Data
• DES also has auxiliary aTmCam system 
• 4 narrow-band filters on 4 cameras 

• Continuously fit atmospheric parameters through 
night 

• Did not use for DES Year 1-3 because of some 
problems with the parameters 
• Working on improved calibration of aTmCam…

promising so far.
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From ADUs to Fluxes
• The number of ADU depends on size of telescope, 

passband Sbobs and SED of source Fν(λ) 

• Normalizing to the AB scale yields 

• But what we really want is the magnitude through 
our “standard” atmosphere 

• See Fukugita+96, Lynne Jones, LSST Science 
Book, etc.
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same period of time.

• The FGCM calibration algorithm naturally incorporates data from auxiliary

instrumentation when it is available.

• The FGCM analysis provides su�cient definition to allow linearized corrections for

the slopes across the observational passbands of the Spectral Energy Distributions

(SEDs) of celestial sources (Li et al. 2016).

2. Broad-Band Photometry with Chromatic Corrections

A digital camera on a modern ground-based astronomical telescope will count a fraction

of the photons produced by a celestial source that reach the top of the earth’s atmosphere

(TOA). For broad-band observations, the digital count in the camera (ADU) produced by

a source is proportional to the integral of the TOA flux F

⌫

(�) from the source weighted by

the observational passband, S
b

(x,y,alt,az,t,�),

ADU
b

=
A

g

⇥
Z

�T

0

dt⇥
Z 1

0

F

⌫

(�)⇥ S

b

(x,y,alt,az,t,�)⇥ d�

h

P l

�

, (1)

where A is the area of the telescope pupil, g is the electronic gain of the camera sensors

(electron/ADU), and �T is the duration of the exposure. The units of flux F

⌫

(�) are

ergs cm�2 s�1 Hz�1, and the factor (h
P l

�)�1

d� counts the number of photons per unit energy

at a given wavelength (h
P l

is the Planck constant). The coordinates (x,y) are those of the

source image in the focal plane of the camera, (alt,az) are the altitude and azimuth of the

telescope pointing, and t is the time and date (MJD) of the observation. For convenience,

we refer to this position- and time-variable observational passband as:

S

obs

b

(�) ⌘ S

b

(x,y,alt,az,t,�). (2)
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We define an observed TOA magnitude of a celestial source as Fukugita et al. (1996),

m
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With the measured ADU count from Eqn. 1 this becomes,
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where the value

ZPTAB = 2.5 log
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✓
AF
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gh

P l

◆

includes the AB flux normalization F

AB = 3631 Jansky (1 Jy = 10�23 ergs cm�2 s�1 Hz�1)

(Oke & Gunn 1983), and Iobs
0

is defined as the integral over the observational passband:
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0

S

obs

b

(�)��1

d�. (5)

The utility of Eqns. 3 and 4 is limited by the large variety of passbands that will be

encountered during the course of the DES campaign. Even if each passband is known,

proper scientific interpretation will depend on knowledge of the wavelength dependence of

the source SED. We seek a definition of a unique photometric quantity to associate with

each source that can be compared to other measurements and theoretical predictions, and

we seek a method to obtain this quantity from the DES campaign data.

Consider the broad-band magnitude that would be measured if the source were

observed through a “standard” passband that we choose at our convenience,
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To The Standard!
• The difference between the observed passband 

and the standard passband is: 

• With a normalization integral I0 

• This correction depends on SED (color) of object 
• Each individual observation has its own 

bandpass which must be corrected
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The di↵erence between this “standard” magnitude and a given observed magnitude is,

�

STD

b

⌘ m

STD

b

�m

obs

b

= 2.5 log
10

✓R1
0

S

STD

b

(�)⇥ �

�1

d�R1
0

S

obs

b

(�)⇥ �

�1

d�

◆

+ 2.5 log
10

✓ R1
0

F

⌫

(�)⇥ S

obs

b

(�)⇥ �

�1

d�R1
0

F

⌫

(�)⇥ S

STD

b

(�)⇥ �

�1

d�

◆

= 2.5 log
10

(ISTD

0

(b)/Iobs
0

(b))

+ 2.5 log
10

✓ R1
0

F

⌫

(�)⇥ S

obs

b

(�)⇥ �

�1

d�R1
0

F

⌫

(�)⇥ S

STD

b

(�)⇥ �

�1

d�

◆
,

(7)

where ISTD

0

is defined analogously to Eqn. 5 with the standard passband. Given knowledge

of the source SED and observational passband, this term is the full chromatic correction to

transform any source to the standard passband. Note that either in the case of a flat (AB)

SED, or when the observed passband is equal to the standard passband, the correction is

indentically zero.

In practice, the direct use of Eqn. 7 is challenging. First, we do not generally have

precise SEDs of all our photometrically-identified calibration stars. Second, and more

importantly, for the purposes of fitting model parameters the amount of computing required

to repeatedly perform the necessary integrations is impractical. Therefore, it is convenient

to make a first-order expansion of the SED of the source,

F

⌫
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b

) + F
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)(�� �
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), (8)
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b

)

d�

, (9)

is the average slope of the SED across the passband. For convenience, we additionally

define the ratio

F 0

⌫

(�
b

) ⌘ F

0

⌫

(�
b

)/F
⌫

(�
b

). (10)

The reference wavelength �

b

is arbitrary, and we have defined it as the photon-weighted
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Chromatic Corrections
• Including instrumental and atmosphere effects, red 

histograms show the chromatic correction per 
exposure for stellar SEDs

11

Blue Stars (g-i ~ 0.5) Red Stars (g-i ~ 3.0)



Instrumental Passband
• Instrumental effects (filter variations, anti-reflective 

coating differences, CCD QE differences) are as 
big or bigger than atmospheric effects 

• Require (at least) CCD-by-CCD scans (for DES 
from the “DECal” system)
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Filters+CCDs
• From the DECal monochromatic scans 

• g band especially variable from chip to chip
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i band Radial Variation
• DECam i band filter has blue edge that varies with 

radius
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Mirror + Corrector Dust
• Dust accumulates on mirror and corrector 

• Mirror washing a few times a year 
• Mirror to be re-aluminized summer 2017
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The Fit
• Given atmospheric parameters and CCD response, 

correct each observation of each object from  
mobs → mSTD 

• Compute average magnitudes of each object 

• Compute global χ2
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4.2. The FGCM Fit

The FGCM fitting step minimizes the weighted dispersion of repeated measurements

of the m

STD

b

magnitudes of calibration stars (c.f. Eqn. 15),

�
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⇣
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(i,j)�m

STD

b

(j)
⌘
2

�
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where the summation is over all calibration objects j found on all calibration exposures i.

The error-weighted means of the calibrated magnitudes mSTD

b

(i,j) of each calibration star j,

m
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P
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m
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P
i

�

phot(i,j)�2

, (26)

are taken as the best estimates of the true standard magnitudes. The statistical

photometric errors �

phot(i,j) in these formulae are computed by DESDM from source

and background ADU counts, and the parameter �

phot

0

= 0.003 is introduced to control

possible underestimates of the errors assigned to the brightest objects. The SciPy bounded

fitting routine FMIN L BFGS B5 is used to minimize the �

2 with the function value and

derivatives with respect to all fit parameters explicitly computed.

The FGCM parameter vectors do not include any model of extinction by cloud cover;

a detailed fit of cloud structure across the DECam field of view might be done (Burke, op

cit), but was not attempted for the DES Y3A1 release. So key to the FGCM fitting process

is the ability to isolate a set of exposures free of clouds, or “photometric”. To do this, the

residual of each measurement i of the magnitude of each calibration star j is computed

using the parameter vectors from the most recent fit cycle,

E

gray(i,j) ⌘ m

STD

b

(j)�m

STD

b

(i,j). (27)

5http://github.com/scipy/scipy/blob/v0.14.0/scipy/optimize/lbfgsb.py#L47
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Chromatic Shifts
• To first order, the fit is sensitive to atmospheric 

extinction (I0) to different components of 
atmosphere 

• The fit is also sensitive to different color objects, 
and the response to different atmospheric 
components 
• PWV for z and Y bands 
• Aerosols in g and r bands 
• Instrumental effects in all bands
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Water Vapor and z-band
• High PWV cuts the red end of the z band, so red 

and blue stars are shifted differently
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Water Vapor and Y-band
• High PWV cuts the blue end of the Y band, so red 

and blue stars shift the opposite way from z
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Airmass and g-band
• High and low airmass have different Rayleigh 

terms, and different chromatic response in g

20

pr
e-

co
rre

ct
io

n 
re

sid
ua

l Binned residuals for 
2 exposures



Photometric Selection
• As with any global calibration routine, a challenge 

is to select “photometric” observations 

• Anything that is consistent with model is 
photometric 
• Fainter than model is non-photometric 
• Forward model approach constrains to physical 

solutions 

• Fit model, reject non-photometric exposures, and 
refit
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Photometric Selection
• Make cut progressively tighter at each fit “cycle”
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mix of model noise 
and non-photometric 

observations

exposure avg. “gray” residual in i band



Atmosphere Fits
• Model parameters show seasonality
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Water Vapor and z-band
• Before correction…
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Water Vapor and z-band
• After correction…
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Global and Exposure Fits

I1 is the linearized chromatic correction from fit
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Calibration Errors
• Stability/Repeatability 

• If you return to an object 

• Uniformity 
• If you go to another point in the survey footprint 

• Chromatic 
• If you move to a different object SED
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Repeatability (griz)
• For all observations of all objects in the fit, what is 

the intrinsic RMS? 
• ~5-6 mmag 
• These are straight model residuals 
• Assume: each tiling  

is independent 
• Yields the variance of  

the parent distribution  
of the random errors 
of calibration fit 

• (δFGCM)2  
  ~ (5-6 mmag)2

28

σcal=0.0053 σcal=0.0045

σcal=0.0048 σcal=0.0059



Repeatability (Y)

29

σcal=0.0058

• We do not use Y band in our fit.  It is “dead-
reckoned” 

• We think we know the atmosphere from the other 
bands… do we?  (yes)



Comparing to Gaia G
• Consistent with 5-6 mmag uniformity over 5000 

deg2 footprint 
• Very broad Gaia G band tricky to compare to

30



Comparing to Gaia G
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LSST
• QA and redundancy!  (obvious) 
• Robert’s dream of measuring (e.g.) PWV directly 

from each image affected by PWV 
• We have the signal … but it is noisy 
• Smooth over what timescale? 

• Aerosol signal is trickier… 
• Given Gaia spectrophotometry, we can short-circuit 

parts 
• Known SED of every (brighter) source 
• Use apparent star colors as more direct measure 

of atmospheric parameters (as above)
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Updates
• Add aperture correction term (necessary for DES 

photometry) 
• Updated model interpolation 
• Repeatability down to 3-4 mmag in gri 

• Need more PWV improvements for z, Y 
• Completely refactored code >10x faster 

• 3 years of DES in <24 hours using 20 cores 
• Being incorporated into LSST stack 

• Code to be made public “soon”
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Extra Slides
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Linear Approximation
• You should — if you can — integrate the 

corrections given Sbobs and SED of source Fν(λ) 
• This is impractical for fitting 

• Do a first-order expansion of the SED
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where ISTD

0

is defined analogously to Eqn. 5 with the standard passband. Given knowledge

of the source SED and observational passband, this term is the full chromatic correction to

transform any source to the standard passband. Note that either in the case of a flat (AB)

SED, or when the observed passband is equal to the standard passband, the correction is

indentically zero.

In practice, the direct use of Eqn. 7 is challenging. First, we do not generally have

precise SEDs of all our photometrically-identified calibration stars. Second, and more

importantly, for the purposes of fitting model parameters the amount of computing required

to repeatedly perform the necessary integrations is impractical. Therefore, it is convenient

to make a first-order expansion of the SED of the source,
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is arbitrary, and we have defined it as the photon-weighted
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Linear Approximation
• Substituting in, the correction factor is now: 

• And the corrected magnitude is
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4.2. The FGCM Fit

The FGCM fitting step minimizes the weighted dispersion of repeated measurements

of the m

STD

b

magnitudes of calibration stars (c.f. Eqn. 15),
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where the summation is over all calibration objects j found on all calibration exposures i.

The error-weighted means of the calibrated magnitudes mSTD

b

(i,j) of each calibration star j,
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are taken as the best estimates of the true standard magnitudes. The statistical

photometric errors �

phot(i,j) in these formulae are computed by DESDM from source

and background ADU counts, and the parameter �

phot

0

= 0.003 is introduced to control

possible underestimates of the errors assigned to the brightest objects. The SciPy bounded

fitting routine FMIN L BFGS B5 is used to minimize the �

2 with the function value and

derivatives with respect to all fit parameters explicitly computed.

The FGCM parameter vectors do not include any model of extinction by cloud cover;

a detailed fit of cloud structure across the DECam field of view might be done (Burke, op

cit), but was not attempted for the DES Y3A1 release. So key to the FGCM fitting process

is the ability to isolate a set of exposures free of clouds, or “photometric”. To do this, the

residual of each measurement i of the magnitude of each calibration star j is computed

using the parameter vectors from the most recent fit cycle,

E
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5http://github.com/scipy/scipy/blob/v0.14.0/scipy/optimize/lbfgsb.py#L47
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mean wavelength of the instrumental passband,
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where S
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b

is the focal-plane average instrumental system response (see Eqn. 17) excluding

the atmosphere. Then we find,
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We define an I
1

integral similar to Eqn. 5,
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with a similar definition for the corresponding integral over the standard passband. It is

also convenient to define the “normalized chromatic passband integral”,
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Combining Eqn. 4 with Eqn. 12 we find,
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The measured standard magnitude is determined by an “instrumental magnitude” given

by raw ADU counts and exposure time, the integral of the observational passband, and

a “chromatic correction.” As mentioned above, the linearized approximation is made for

speed and computability in the model fit, but it not required in general if the full SED

of the source and passband are known. Since the chromatic correction will be zero if

the observing passband is the standard passband, it is advantageous to choose standard

passbands that are those most often encountered during the survey. The correction will also

– 10 –

mean wavelength of the instrumental passband,

�

b

⌘
R1
0

�⇥ S

inst

b

(�)⇥ �

�1

d�R1
0

S

inst

b

(�)⇥ �

�1

d�

, (11)

where S

inst

b

is the focal-plane average instrumental system response (see Eqn. 17) excluding

the atmosphere. Then we find,

�

STD

b

⇡ 2.5 log
10

(ISTD

0

/Iobs
0

)

+ 2.5 log
10

 R1
0

(1 + F 0
⌫

(�
b

)⇥ (�� �

b

))⇥ S

obs

b

(�)⇥ �

�1

d�R1
0

(1 + F 0
⌫

(�
b

)⇥ (�� �

b

))⇥ S

STD

b

(�)⇥ �

�1

d�

!
.

(12)

We define an I
1

integral similar to Eqn. 5,

Iobs
1

(b) ⌘
Z 1

0

S

obs

b

(�)(�� �

b

)��1

d�, (13)

with a similar definition for the corresponding integral over the standard passband. It is

also convenient to define the “normalized chromatic passband integral”,

Iobs
10

(b) ⌘ Iobs
1

(b)

Iobs
0

(b)
. (14)

Combining Eqn. 4 with Eqn. 12 we find,

m

STD

b

=� 2.5 log
10

(ADU) + 2.5 log
10

(�T ) + 2.5 log
10

(Iobs
0

)

+ 2.5 log
10

✓
1 + F 0

⌫

(�
b

)Iobs
10

(b)

1 + F 0
⌫

(�
b

)ISTD

10

(b)

◆
+ ZPTAB

.

(15)

The measured standard magnitude is determined by an “instrumental magnitude” given

by raw ADU counts and exposure time, the integral of the observational passband, and

a “chromatic correction.” As mentioned above, the linearized approximation is made for

speed and computability in the model fit, but it not required in general if the full SED

of the source and passband are known. Since the chromatic correction will be zero if

the observing passband is the standard passband, it is advantageous to choose standard

passbands that are those most often encountered during the survey. The correction will also

– 10 –

mean wavelength of the instrumental passband,

�

b

⌘
R1
0

�⇥ S

inst

b

(�)⇥ �

�1

d�R1
0

S

inst

b

(�)⇥ �

�1

d�

, (11)

where S

inst

b

is the focal-plane average instrumental system response (see Eqn. 17) excluding

the atmosphere. Then we find,

�

STD

b

⇡ 2.5 log
10

(ISTD

0

/Iobs
0

)

+ 2.5 log
10

 R1
0

(1 + F 0
⌫

(�
b

)⇥ (�� �

b

))⇥ S

obs

b

(�)⇥ �

�1

d�R1
0

(1 + F 0
⌫

(�
b

)⇥ (�� �

b

))⇥ S

STD

b

(�)⇥ �

�1

d�

!
.

(12)

We define an I
1

integral similar to Eqn. 5,

Iobs
1

(b) ⌘
Z 1

0

S

obs

b

(�)(�� �

b

)��1

d�, (13)

with a similar definition for the corresponding integral over the standard passband. It is

also convenient to define the “normalized chromatic passband integral”,

Iobs
10

(b) ⌘ Iobs
1

(b)

Iobs
0

(b)
. (14)

Combining Eqn. 4 with Eqn. 12 we find,

m

STD

b

=� 2.5 log
10

(ADU) + 2.5 log
10

(�T ) + 2.5 log
10

(Iobs
0

)

+ 2.5 log
10

✓
1 + F 0

⌫

(�
b

)Iobs
10

(b)

1 + F 0
⌫

(�
b

)ISTD

10

(b)

◆
+ ZPTAB

.

(15)

The measured standard magnitude is determined by an “instrumental magnitude” given

by raw ADU counts and exposure time, the integral of the observational passband, and

a “chromatic correction.” As mentioned above, the linearized approximation is made for

speed and computability in the model fit, but it not required in general if the full SED

of the source and passband are known. Since the chromatic correction will be zero if

the observing passband is the standard passband, it is advantageous to choose standard

passbands that are those most often encountered during the survey. The correction will also

achromatic 
extinction

chromatic 
correction



Computing Zeropoints
• The FGCM fit yields a set of standard star 

magnitudes from good, photometric exposures 
• To compute a CCD zeropoint: 

• Where I0 is the integrated atmosphere extinction; 
we have a chromatic correction that depends on 
star color; a “superstarflat” correction 

• The residual between the zeropoint and the 
predicted model zeropoint is CCDgray

37

model zp

ZP =< mSTD

j � (mobs

ij + I
0

+ chrom + superstar + ... >



Computing Zeropoints
• The “gray” corrections are assumed to have no 

chromatic terms 
• Clouds, dome occultations, other effects 
• Errors in atmosphere and unmodeled effects: this will 

be an incorrect assumption 
• 90% of DES exposures taken on nights with 

atmospheric solution 
• The rest have only instrumental chromatic corrections 

• Apply to all CCDs 
• Effect of “compressing” the repeatability plots 
• This is a fit artifact, and we do not believe the (2-3 

mmag) errors that result from this.
38



Aperture Effects
• We only recently looked at fit residuals with PSF 

FWHM 
• This is an issue that increases our noise 

• Implementing an afterburner correction for DES 
Year 3; properly fit in new versions of code
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Gray Residuals with Seeing
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