"Forward Global Calibration" of the Dark Energy Survey

Eli Rykoff, Dave Burke and the DES Calibrations Crew

LSST Calibrations Meeting

June 14th, 2017

DARK ENERGY SURVEY

Outline

- What is FGCM?
 - See Burke, Rykoff+17 http://arxiv.org/abs/ 1706.01542
- Atmosphere and Instrumental Passbands
- The FGCM Fitting Procedure
- Calibration Errors
- LSST

What is FGCM?

- The "Forward Global Calibration Method"
 - Solve the global calibration problem with a physical model of the atmosphere + instrument
 - Picking up on Stubbs & Tonry (2006)
- Given a set of atmospheric parameters at any given time (under photometric conditions) we can predict the atmospheric extinction as a function of wavelength
 - Also need to know object SED (see e.g., Li+16)
- Once we know the atmospheric extinction, can predict fluxes of all the objects in an exposure

What is FGCM?

- Two step process
- Select exposures & stars suitable to obtain atmospheric model on nights of the survey
 - Multi-band solution
 - Assume atmospheric parameters vary slowly over the night
- Calibration stars are used to fit the zeropoint for all exposures in survey
 - Include chromatic corrections
 - Include non-photometric exposures (with increased error!)

The Atmosphere Model

- Atmospheric transmission can be described with a small number of parameters
 - Precipitable water vapor (PWV)
 - Aerosol Optical Depth (AOD) τ and α

 $\tau(\lambda) = \tau_{7750} \times (\lambda/7750 \,\text{\AA})^{-\alpha}$

- Ozone (O₃)
- Given zenith distance and barometric pressure, compute Rayleigh and O₂ using MODTRAN

Atmosphere Constituents

• The FGCM standard atmosphere model

Fit Parameters

- We use PWV from the GPS monitor system
 - With a global multiplicative and additive bias
- A single-constituent aerosol, with optical depth τ₇₇₅₀ that varies linearly through the night, and single α per night
- A single value for Ozone each night
- Plus airmass and site-monitored barometric pressure

Auxiliary Data

- DES also has auxiliary aTmCam system
- 4 narrow-band filters on 4 cameras
 - Continuously fit atmospheric parameters through night
- Did not use for DES Year 1-3 because of some problems with the parameters
 - Working on improved calibration of aTmCam... promising so far.

From ADUs to Fluxes

- The number of ADU depends on size of telescope, passband $S_b{}^{obs}$ and SED of source $F_v(\lambda)$

$$ADU_{b} = \frac{A}{g} \times \int_{0}^{\Delta T} dt \times \int_{0}^{\infty} F_{\nu}(\lambda) \times S_{b}(x, y, \text{alt}, \text{az}, t, \lambda) \times \frac{d\lambda}{h_{Pl}\lambda}$$

- Normalizing to the AB scale yields $m_b^{\text{obs}} \equiv -2.5 \log_{10} \left(\frac{\int_0^\infty F_\nu(\lambda) \times S_b^{\text{obs}}(\lambda) \times \lambda^{-1} d\lambda}{\int_0^\infty F^{\text{AB}} \times S_b^{\text{obs}}(\lambda) \times \lambda^{-1} d\lambda} \right)$
- But what we really want is the magnitude through our "standard" atmosphere

$$m_b^{\rm STD} \equiv -2.5 \log_{10} \left(\frac{\int_0^\infty F_\nu(\lambda) \times S_b^{\rm STD}(\lambda) \times \lambda^{-1} d\lambda}{\int_0^\infty F^{\rm AB} \times S_b^{\rm STD}(\lambda) \times \lambda^{-1} d\lambda} \right)$$

• See Fukugita+96, Lynne Jones, LSST Science Book, etc.

To The Standard!

• The difference between the observed passband and the standard passband is:

$$\begin{split} \delta_b^{\text{STD}} &\equiv m_b^{\text{STD}} - m_b^{\text{obs}} = 2.5 \log_{10} (\mathbb{I}_0^{\text{STD}}(b) / \mathbb{I}_0^{\text{obs}}(b)) \\ &+ 2.5 \log_{10} \left(\frac{\int_0^\infty F_\nu(\lambda) \times S_b^{\text{obs}}(\lambda) \times \lambda^{-1} d\lambda}{\int_0^\infty F_\nu(\lambda) \times S_b^{\text{STD}}(\lambda) \times \lambda^{-1} d\lambda} \right) \end{split}$$

• With a normalization integral I_0

$$\mathbb{I}_0^{\text{obs}}(b) \equiv \int_0^\infty S_b^{\text{obs}}(\lambda) \lambda^{-1} d\lambda$$

- This correction depends on SED (color) of object
 - Each individual observation has its own bandpass which must be corrected

Chromatic Corrections

 Including instrumental and atmosphere effects, red histograms show the chromatic correction per exposure for stellar SEDs

Instrumental Passband

- Instrumental effects (filter variations, anti-reflective coating differences, CCD QE differences) are as big or bigger than atmospheric effects
- Require (at least) CCD-by-CCD scans (for DES from the "DECal" system)

Filters+CCDs

- From the DECal monochromatic scans
 - g band especially variable from chip to chip

i band Radial Variation

• DECam *i* band filter has blue edge that varies with radius

Mirror + Corrector Dust

- Dust accumulates on mirror and corrector
 - Mirror washing a few times a year
 - Mirror to be re-aluminized summer 2017

The Fit

- Given atmospheric parameters and CCD response, correct each observation of each object from m^{obs} → m^{STD}
- Compute average magnitudes of each object

$$\overline{m_b^{\mathrm{STD}}(j)} = \frac{\sum_i m_b^{\mathrm{STD}}(i,j) \sigma^{\mathrm{phot}}(i,j)^{-2}}{\sum_i \sigma^{\mathrm{phot}}(i,j)^{-2}}$$

• Compute global χ^2

$$\chi^2 = \sum_{(i,j)} \frac{\left(m_b^{\text{STD}}(i,j) - \overline{m_b^{\text{STD}}(j)}\right)^2}{\sigma^{\text{phot}}(i,j)^2 + (\sigma_0^{\text{phot}})^2}$$

Chromatic Shifts

- To first order, the fit is sensitive to atmospheric extinction (I₀) to different components of atmosphere
- The fit is *also* sensitive to different color objects, and the response to different atmospheric components
 - PWV for *z* and *Y* bands
 - Aerosols in *g* and *r* bands
 - Instrumental effects in all bands

Water Vapor and z-band

 High PWV cuts the red end of the z band, so red and blue stars are shifted differently

Water Vapor and Y-band

 High PWV cuts the blue end of the Y band, so red and blue stars shift the opposite way from z

Airmass and g-band

• High and low airmass have different Rayleigh terms, and different chromatic response in *g*

Photometric Selection

- As with any global calibration routine, a challenge is to select "photometric" observations
- Anything that is consistent with model is photometric
 - Fainter than model is non-photometric
 - Forward model approach constrains to physical solutions
- Fit model, reject non-photometric exposures, and refit

Photometric Selection

• Make cut progressively tighter at each fit "cycle"

Atmosphere Fits

• Model parameters show seasonality

Water Vapor and z-band

• Before correction...

Water Vapor and z-band

• After correction...

Global and Exposure Fits

Calibration Errors

- Stability/Repeatability
 - If you return to an object
- Uniformity
 - If you go to another point in the survey footprint
- Chromatic
 - If you move to a different object SED

Repeatability (griz)

- For all observations of all objects in the fit, what is the intrinsic RMS?
- ~5-6 mmag
- These are straight model residuals
- Assume: each tiling is independent
- Yields the variance of the parent distribution of the random errors of calibration fit
- (δFGCM)²
 - ~ (5-6 mmag)²

Repeatability (Y)

- We do not use Y band in our fit. It is "deadreckoned"
- We think we know the atmosphere from the other bands... do we? (yes)

Comparing to Gaia G

- Consistent with 5-6 mmag uniformity over 5000 deg² footprint
- Very broad Gaia G band tricky to compare to

Comparing to Gaia G

LSST

- QA and redundancy! (obvious)
- Robert's dream of measuring (e.g.) PWV directly from each image affected by PWV
 - We have the signal ... but it is noisy
 - Smooth over what timescale?
- Aerosol signal is trickier...
- Given Gaia spectrophotometry, we can short-circuit parts
 - Known SED of every (brighter) source
 - Use apparent star colors as more direct measure of atmospheric parameters (as above)

Updates

- Add aperture correction term (necessary for DES photometry)
- Updated model interpolation
- Repeatability down to 3-4 mmag in gri
 - Need more PWV improvements for *z*, *Y*
- Completely refactored code >10x faster
 - 3 years of DES in <24 hours using 20 cores
- Being incorporated into LSST stack
 - Code to be made public "soon"

Extra Slides

Linear Approximation

- You should if you can integrate the corrections given S_b^{obs} and SED of source $F_v(\lambda)$
 - This is impractical for fitting
- Do a first-order expansion of the SED

$$F_{\nu}(\lambda) = F_{\nu}(\lambda_b) + F'_{\nu}(\lambda_b)(\lambda - \lambda_b)$$

$$F_{\nu}'(\lambda) = rac{dF_{
u}(\lambda_b)}{d\lambda}$$

$$\mathcal{F}_{\nu}^{'}(\lambda_{b})\equiv F_{\nu}^{'}(\lambda_{b})/F_{\nu}(\lambda_{b})$$

Linear Approximation

• Substituting in, the correction factor is now:

$$\begin{split} \delta_b^{\text{STD}} &\approx 2.5 \log_{10}(\mathbb{I}_0^{\text{STD}} / \mathbb{I}_0^{\text{obs}}) \\ &+ 2.5 \log_{10}\left(\frac{\int_0^\infty (1 + \mathcal{F}_\nu'(\lambda_b) \times (\lambda - \lambda_b)) \times S_b^{\text{obs}}(\lambda) \times \lambda^{-1} d\lambda}{\int_0^\infty (1 + \mathcal{F}_\nu'(\lambda_b) \times (\lambda - \lambda_b)) \times S_b^{\text{STD}}(\lambda) \times \lambda^{-1} d\lambda}\right) \end{split}$$

 $E^{\rm gray}(i,j) \equiv \overline{m_b^{\rm STD}(j)} - m_b^{\rm STD}(i,j)$

Computing Zeropoints

- The FGCM fit yields a set of standard star magnitudes from good, photometric exposures
- To compute a CCD zeropoint:

 $ZP = \langle \overline{m_j^{\text{STD}}} - (m_{ij}^{\text{obs}} + \mathbb{I}_0 + \text{chrom} + \text{superstar} + ... \rangle$

model zp

- Where I₀ is the integrated atmosphere extinction; we have a chromatic correction that depends on star color; a "superstarflat" correction
- The residual between the zeropoint and the predicted model zeropoint is CCD^{gray}

Computing Zeropoints

- The "gray" corrections are assumed to have no chromatic terms
 - Clouds, dome occultations, other effects
 - Errors in atmosphere and unmodeled effects: this will be an incorrect assumption
- 90% of DES exposures taken on nights with atmospheric solution
 - The rest have only instrumental chromatic corrections
- Apply to all CCDs
 - Effect of "compressing" the repeatability plots
 - This is a fit artifact, and we do not believe the (2-3 mmag) errors that result from this.

Aperture Effects

- We only recently looked at fit residuals with PSF FWHM
 - This is an issue that increases our noise
- Implementing an afterburner correction for DES Year 3; properly fit in new versions of code

Grav Residuals with Seeind

