The Euclid Mission

M. Sauvage (Science Ground Segment) on behalf of the Euclid Consortium with slides from Y. Mellier

Euclid Top Level Science Requirements

Sector	Euclid Targets	
Dark Energy	• Measure the cosmic expansion history to better than 10% in redshift bins $0.7 < z < 2$.	
	• Look for deviations from $w = -1$, indicating a dynamical dark energy.	
	• Euclid <i>alone</i> to give $FoM_{DE} \ge 400$ (1-sigma errors on w_{p} , & w_a of 0.02 and 0.1 respectively)	
Test Gravity	• Measure the growth index, γ , with a precision better than 0.02	
	Measure the growth rate to better than 0.05 in redshift bins between 0.5< $z < 2$.	
	Separately constrain the two relativistic potentials Ψ, Φ .	
	Test the cosmological principle	
Dark Matter	 Detect dark matter halos on a mass scale between 10⁸ and >10¹⁵ M_{Sun} 	
	Measure the dark matter mass profiles on cluster and galactic scales	
	Measure the sum of neutrino masses, the number of neutrino species and the neutrino hierarchy with an accuracy of a few hundredths of an eV	
Initial Conditions	• Measure the matter power spectrum on a large range of scales in order to extract values for the parameters σ_8 and <i>n</i> to a 1-sigma accuracy of 0.01.	
	For extended models, improve constraints on <i>n</i> and α wrt to Planck alone by a factor 2.	
	• Measure a non-Gaussianity parameter : f_{NL} for local-type models with an error < +/-2.	
	• DE equation of state: $P/\rho = w$, and $w(a) = w_p + w_a(a_p - a)$ • Growth rate of structure formation: $f \sim \Omega^{\gamma}$:	

FoM=1/($\Delta w_a x \Delta w_p$) > 400 \rightarrow ~1% precision on w's.

by requirements!

See Euclid theory living reviewhttp://link.springer.com/article/10.12942/lrr-2013-6

WL probe: Cosmic shear over 0<z<2 :

1.5 billion galaxies shapes, shear and phot-z (u,g, r,i,z,Y,J,H) with 0.05 (1+z) accuracy over 15,000 deg²

GC; BAO, RSD probes: 3-D positions of galaxies over 0.7<z<1.8 :

35 million spectroscopic redshifts with 0.001 (1+z) accuracy over 15,000 deg²

Euclid Survey and data

Euclid is a cosmological survey mission, but unlike CMB experiments, it will only do its survey once!

Survey strategy is extremely constrained by "non-scientific" considerations, e.g.the number of times we can point the satellite!

VIS:

- Imaging
- 36 4k x 4k CCD
- 0.54 deg² per field
- 0.1" pixels on the sky
- limiting magnitude: 24.5 AB $@10\sigma$
- 520 Gbit/day

NISP:

- Imaging and slitless grism spectroscopy
- 16 2k x 2k NIR arrays
- 0.55 deg² per field
- 0.3" pixels on the sky
- limiting magnitude: 24 AB @5σ
- 240 Gbit/day

Visible and infrared imaging, as well as infrared spectroscopy are obtained "simultaneously"

ESA Euclid mission

- 2 200 kg
- Dimensions:
- 4,5 m x 3 m
- Launch: May 2021 (or later)
 by a Soyuz rocket from the
 Kourou space port
- Orbit: Euclid placed in L2
- Survey: 6 years

PLM, flight hardware, scientific instruments

From Thales Alenia Italy, Airbus DS, ESA Project office and Euclid Consortium

Courtesy: S. Pottinger, M. Cropper and the VIS team

Payload and Mechanism Control Unit (PMCU)

VIS

VIS CDR on-going...

Table 1: VIS and weak lensing channel characteristics

Spectral Band	550 – 900 nm
System Point Spread Function size	≤0.18 arcsec full width half maximum at 800 nm
System PSF ellipticity	≤15% using a quadrupole definition
Field of View	>0.5 deg ²
CCD pixel sampling	0.1 arcsec
Detector cosmetics including cosmic rays	≤3% of bad pixels per exposure
Linearity post calibration	≤0.01%
Distortion post calibration	≤0.005% on a scale of 4 arcmin
Sensitivity	$m_{AB}{\geq}24.5$ at $10\sigmain3$ exposures for galaxy size 0.3 arcsec
Straylight	≤20% of the Zodiacal light background at Ecliptic Poles
Survey area	15000 deg ² over a nominal mission with 85% efficiency
Mission duration	6 years including commissioning
Shear systematic bias allocation	additive $\sigma_{sys} \le 2 \ge 10^{-4}$; multiplicative $\le 2 \ge 10^{-3}$

Gopper et al 2010.31 IL

Measure of focal plane geometry

Delivery of the Structural & Thermal Model (May '17)

NISP

Courtesy: T. Maciaszek and the NISP team

NISP CDR successful in Nov 2016

• FoV: 0.55 deg²

Maciaszek et al 2016:SPIE

- Mass : 159 kg
- Telemetry: < 290 Gbt/day
- Size: 1m x 0.5 m x 0.5 m
- 16 2kx2K H2GR detectors
- 0.3 arcsec pixel on sky
- Limiting mag, wide survey AB : 24 (5 σ)
- 3 Filters:
- •Y (950-1192nm)
- •, J (1192, 1544nm)
- •, H (1544, 2000nm)
- 4 grisms:
- •1B (920 1300) , 1 orientation 0°
- •3R (1250 1850), 3 orientations 0° , 90° , 180°

Reliability issues with cold electronics, FM delivery of detectors halted

consorhu

Performance Status on Dec 2016

erf örnhmicel Medsurn ance Measure		Requirement	CBE Current
Image Quality			
Technical Performa	ዡዋላ∰ና የመ 800nm)	180 mas	160 mas
Image Quality	ellipticity	15.0%	9.4%
	R2 (@ 800 nm)	0.0576	0.0551
nel VIS Channel	ellipticity stability σ(εί)	2.00E-04 2.00E-04	1.90E-04 2.00E-04
VIS Channel	R2 stability σ(R2)/ <r2></r2>	1.00E-03	1.00E-04
	Plate scale	0.10 "	0.100 "
	rEE50 (@1486nm)	400 mas	225 mas
el NISP Channel NISP Channel	rEE80 (@1486nm)	700 mas	584 mas
	Plate scale	0.30 "	0.299 "
Sensitivity			
r hVASBSHVR4.155 papuaned	sta:24,5, see sources)	10	16.99
(ONISERSON ROO ALGUNATION 2200 e16 erg2sn12		3.5	4.81
(feenere)PSNR (for	Y-band	5	5.89
MAB ₱ 30 R (for	1)-taandd	5 ⁵	ର୍ଟ୍ ଫ୍ରି
for the sources)	t#®ahd	5 ⁵	5:34
NISP-S Performa	nce	5	5.35
Rusity		80%	72%
completeness		45%	52%
Survey		°	
Wide Survey Coverage		15,000 deg2	15,000
Survey length [years]		5.5	5.4
Pucid	From R. Laureiis	s and ESA	PO

- Image quality of the system fully in line with needs.
- Ellipticity, R² stability and non-convolutive errors performance dictated mainly by ground processing.
- *Purity* not compliant with current data processing methods but on-going work to recover it with combination of survey modification and specific data processing.

The EC is now running "Science Performance Verification #2" an exercise to verify the mission performance, starting from a consistent cosmological simulation (released last week), using instrument simulation based on CDR, and emulating the actual data processing chain.

Designed data considered

Science Working Groups

Science exploitation of the Euclid data is coordinated by the topical science working groups.

It is within the SWGs that science projects will be designed and papers organized.

- ESS: Survey planning
- SCS: Instrument commanding
- QLA: Quick look analysis
- HMS: Scientific health monitoring
- LE1: Level 1 processing
- VIS: VIS image processing
- NIR: NISP photometry image processing
- SIR: NISP spectroscopy image processing
- EXT: External data ingestion
- MER: Euclid and External data merging
- **SPE**: Spectroscopic redshift and spectral properties
- **SHE**: Shear and weak lensing measurements
- PHZ: Photometric redshift measurements
- LE3: Level3 scientific processing
- SIM: Image simulations

Science Ground Segment

Data processing is broken down in logical units, developed by the Organization Units of the SGS.

The Ground Segment will undergo its Design Review at the end of 2017.

It is currently integrating its various elements through challenges

The mapping of OUs on the pipeline ***** VIS, NIR, EXT: pro

- VIS, NIR, EXT: production of fully calibrated photometric exposures from Euclid and groundbased surveys
- SIR: production of fully calibrated 1D spectra extracted from the NISP spectroscopic exposures.
- MER: production of a source catalog containing consistent photometric and spectroscopic measurements.
- PHZ: production of the photometric redshift for all catalogued sources.
- SPE: production of spectroscopic redshifts for all sources with spectra.
- SHE: measurements of galaxy shapes.
- LE3: production of all high-level science products.
- SIM: production of all the simulated data necessary to validate the data processing stages, and to calibrate observational or method biases.

Scientific Challenges cycle

#	Primary objective		Start	End
Scientific Challenge #1: SIM	Produce samples of Euclid FoV (0,7°) of VIS/NIR/SIR simulated images and spectroscopy images consistent with a single input catalogue (galaxies, stars), instrument model, cosmic rays injected into the simulation code.		Completed	Completed
Scientific Challenge #2: SIM/VIS/NIR/SIR	Produce VIS/NIR/SIR output data products which are consistent with the Data Model: calibrated exposures, stacks, masks, catalogues, 1D spectra, 2D spectra (detection of transients not needed, level Q not needed).		Completed	Completed
Scientific Challenge #3: VIS/NIR/EXT/MER	Production of a merged photometric catalogue of sources from a consistent true universe of stars / galaxies acquired with VIS/NISP Euclid instruments and KIDS/DES ground based surveys		Completed	09/2017
Scientific Challenge #4: VIS/NIR/SIR/EXT/MER/SHE	Production of galaxy shape measurement and optimal VIS PSF model refinement	F	1/2018	07/2018
Scientific Challenge #5: VIS/NIR/SIR/EXT/MER/PHZ	Production of photometric redshifts measurement and PDF.		1/2018	07/2018
Scientific Challenge #6: VIS/NIR/SIR/EXT/MER/SPE	Production of spectroscopic redshifts measurement		1/2018	07/2018
Scientific Challenge #7: VIS/NIR/SIR/EXT/MER/SPE/PHZ/SHE (micro pipeline)	Update pipeline releases to meet more consistent requirement coverage w.r.t. the previous challenges	ts	09/2018	06/2019
Scientific Challenge #8: VIS/NIR/SIR/EXT/MER/SPE/PHZ/SHE/LE3 (full processing)	e #8: ER/SPE/PHZ/SHE/LE3 Quality of LE3 data products shall be challenged according to the corresponding scientific requirements		09/2020	06/2020

VIS (Science + Flats + Bias)

Stars (r<24.0 - 24.5) Galaxies (r<24.0 - 24.5)

Cosmic Rays Photon Noise Optical Ghosts Zodiacal Light AOCS PSF Optical PSF Geometric Distortions Calibration Lamp ADC Conversion ADC Offset Discretization ROE non linearity PRNU СП Saturation Bleeding Pre/Overscans Readout Noise

All simulation data from OU-SIM

NISP-S (Science+chi2)

Stars (H<22.5 - 23.0) Galaxies (H<22.5 - 23.0) Diffuse Scattered Light Thermal BG Zodiacal Light Optical PSF Oth, 1st and 2nd Grism orders FPA Metrology Shutter OE non linearity

Cosmetic Defects

Dark Current Saturation Readout Noise Poisson Noise

NISP-P (Science + Dark + Flats)

Stars (r<24.0 - 24.5)

Galaxies (r<24.0 - 24.5) Cosmic Rays (integration and readout) Diffuse Scattered Light Thermal BG Zodiacal Light AOCS PSF Optical PSF Geometric Distortions FPS Illumination Crosstalk + IPC

QE non linearity

Discretization IntraPixel QE variation Cosmetic Defects Dark Current Saturation Bleeding Readout Noise Poisson Noise

EXT DES Science + Flats + Bias

Stars (r<24.0 - 24.5) Galaxies (r<24.0 - 24.5) Sky brightness* Atmospheric Extinction* Optical Variable PSFs* Optical Distortions* FPA metrology Bleeding Cosmetic defects* Readout noise ADC conversion Poisson Noise Survey Strategy*

* from real observed data

EXT KIDS (Science + Flats + Bias)

Stars (r<24.0 - 24.5) ialaxies (r<24.0 - 24.5) Sky brightness* tmospheric Extinction* Optical PSFs Optical Distortions* FPA metrology Bleeding Cosmetic defects* Readout noise ADC conversion Poisson Noise Survey Strategy*

* from real observed data

Archive overview

provides access to the Euclid data focused on the scientific use of the data. Euclid Archive System The EAS Data Processing System (DPS) stores the data product metadata including the locations of the data files. It provides access to the data SAS DPS products to the EC members, including processing coordination, quality control and processing history tools. The EAS Distributed Storage System (DSS) is installed at all SDCs & SOC and manages the DSS storage of and access to the data files generated by the pipelines. Storage systems are provided by all the SDCs & SOC. All public data will be located at ESAC. Storage infrastructure located at SDCs/SOC

The EAS Science Archive System (SAS)

Major Archive users

User's group

Euclid+ground: photo-z of 1.5 billion galaxies

Ground based imaging over 15,000 deg² in 4 bands + spectroscopy

Euclid Wide and Deep Surveys (including not yet approved plans)

From J.-C. Cuillandre and the Survey WG

>30°: Subaru will very likely turn into Pan-STARRS<30°: Depends on LSST-Euclid negociations

Euclid Wide and Deep Surveys

• Euclid Wide:

- 15000 deg² outside the galactic and ecliptic planes
- 12 billion sources $(3-\sigma)$
- 1.5 billion galaxies with
 - Very accurate morphometric information (WL)
 - Visible photometry: (u), g, r, i, z , (R+I+Z) AB=24.5, 10.0 σ +
 - NIR photometry : Y, J, H AB = 24.0, 5.0σ
 - Photometric redshifts with 0.05(1+z) accuracy
- 35 million spectroscopic redshifts of emission line galaxies with
 - 0.001 accuracy
 - H α galaxies within 0.7 < z < 1.85
 - Flux line: 2 . 10⁻¹⁶ erg.cm⁻².s⁻¹ ; 3.5 σ

- Euclid Deep:
 - 10 deg² at North Ecliptic pole
 - 20 deg² near South Ecliptic pole
 - 10 deg² on CDFS (EDF-Fornax).
 - 10 million sources $(3-\sigma)$
 - 1.5 million galaxies with
 - Very accurate morphometric information (WL)
 - Visible photometry: (u), g, r, i, z , (R+I+Z) AB=26.5, 10.0 σ +
 - NIR photometry : Y, J, H AB = 26.0, 5.0σ
 - Photometric redshifts with 0.05(1+z) accuracy
 - 150 000 spectroscopic redshifts of emission line galaxies with
 - 0.001 accuracy
 - H α galaxies within 0.7 < z < 1.85
 - Flux line: 5 . 10^{-17} erg.cm⁻².s⁻¹; 3.5σ

External data for Euclid

In the Euclid Consortium 2 structures deal with external data for science:

- •The Complementary Observations Group:
 - In charge of all the managerial interface aspects with external collaborations.
 - Members of each external collaborations (enlisted in the EC) belong to the COG.
 - Deal with all programmatic aspects with respect to data availability for data releases.
 - Prepares proposals for external data acquisition when requested by the Science Working groups.
- •The EXT Organization Unit:
 - Ensures that data quality requirements coming from the science objectives are met by the external data set:
 - Either by performing the actual data processing from the raw data up to the fully calibrated exposures (DES model)
 - Or by putting in place the necessary data processing expert interface to transfer the requirements to the external team (CFIS model).
 - Develops methods to perform external data validation before ingestion in Euclid System.
 - Organizes re-processing activities when needed.

Euclidization ground-based external data

Goal	Requirement	External data
Photo-z	∆mag < 10 mmag (relative, single filter)	Ground-based optical imaging CFIS, DES, JEDIS-g (PS, LSST tbc)
VIS PSF modelling	∆color < 2 mmag (TBC) (relative, model scale)	Ground-based optical imaging CFIS, DES, JEDIS-g (PS, LSST tbc)

"Euclidization":

•Achieve consistency between External Surveys and Euclid Space data:

- 1. Photometry: consistent SEDs and absolute scaling SEDs
- 2. Consistent intrinsic light distribution (PSF modelling)
- 3. Consistent astrometry (for forced photometry)

•Produce identical data product formats for External Surveys

Euclid-compliant calibration

Consistency	VIS reference	EXT reference
Photometry	Gaia-G	 Gaia-G for EXT-r EXT-giz relative to EXT-r & 2MASS-J¹
Intrinsic light distribution	PSF modelling (per exposure)	PSF modelling
Astrometry for forced photometry	Gaia-G	Gaia-G ²

¹ expand to G+BP+RP photometry, then spectra and finally add VIS.
 ² replace eventually by Gaia+VIS as astrometric reference.

The specific case of LSST

LSST and Euclid have similar science objectives and schedule. There is added value for both in reaching a data sharing/exchange agreement.

- Euclid side of the interest:
 - ugriz de-trended individual exposures down to the Euclid depth.
 - Filter transmission curves (down to the accuracy needed for photo-z, including spatial dependence).
- LSST side of the interest (likely biased view):
 - High resolution VIS images for de-blending (calibration/training), from the wide and/or deep survey.
 - NIR photometric coverage for photometric redshifts.

Notes:

Euclid is significantly shallower than LSST:

- The LSST data that Euclid would need is a small fraction of total LSST.
- The Euclid data that LSST would need is a small volume w.r.t. LSST data and processing.
- A white paper outlining the science cases for collaboration will be issued shortly, then Euclid and LSST management will make the

Two-staged production

EXT delivery to MER

EXT-PF1 Data Products delivered to MER-PF		
Name	Description	
DetrendedExposure	Detrended exposures. No photometric or astrometric solution or PSF homogenization is applied to the pixels.	
PSFMap	PSF characterization for each position in each detector in a DetrendedExposure. One PSFMap is for one DetrendedExposure.	
AstromSolution	Astrometric solution for each pixel coordinate position in each detector in one DetrendedExposure. One AstromSolution is for one DetrendedExposure.	
PhotomSolution	Photometric solution for each pixel coordinate position in each detector in a DetrendedExposure. One PhotomSolution is for one DetrendedExposure.	
PassbandSolution	A solution mapping the variation of the passband over the field of view. One PassbandSolution for all DetrendedExposures	
Coadds: TBC		

Evolution of baseline to account for the fact that intrinsic edge-to-edge transmission variations are incompatible with the photo-z accuracy requirement.

Mission Timeline and Data Releases

