

Probabilistic Cataloguing in Crowded Fields

Stephen K N PORTILLO with Benjamin C G LEE, Tansu DAYLAN and Douglas P FINKBEINER (arXiv:1703.01303) 13 June 2017 Getting ready to do science with LSST data, Lyon

Telescopes don't make catalogues!

Slide title stolen from Hogg and Lang, EAS Publication Series 45, 351 (2011) Image: SDSS DR 12

People make catalogues

		RA (J2000)	DEC (J2000)	g	r		NGC 7006
		229.4351	2.010923	19.344	19.1	14	[Fe/H]=-1.48
		229.4353	1.990166	23.070	21.4		
		229.4358	2.033374	21.809	21.2		
and the second		229.4361	2.070269	20.107	19.7		°°° /
	Strate March Product	229.4362	1.997957	22.894	21.3		F •• •/1
		229.4364	2.048578	22.386	21.6	16	
	and the second second	229.4366	2.053515	20.853	20.4		
		229.4369	2.103516	21.827	21.0		- 3.]
		229.4369	2.043476	23.067	21.7		1.1
		229.4370	2.051732	19.960	19.6	10	· · · · · · · · · · · · · · · · · · ·
		229.4371	2.102266	20.813	20.3	H 10	
		229.4373	2.052342	20.785	20.3		
		229.4374	1.996688	21.161	20.6		
		229.4376	2.133210	22.476	21.6		
		229.4378	2.039289	20.883	20.4	20	
		229.4380	2.077996	22.682	21.8	~~	
	and the second	229.4380	2.043483	22.884	21.6		
		229.4381	2.045585	20.111	19.7		
		229.4382	2.011463	22.069	21.3		-
		229.4382	2.029807	19.625	19.3	22	
		229.4382	2.030182	17.835	17.2		
		229.4385	2.157053	22.193	21.8		utiniluuluu
		229.4385	2.147021	22.492	21.5		0.0 0.5 1.0 0
		<u></u>					a - r
							g I
					_		
	imagag —		tolog	1100			aionao
	images –		ualog	ues) T	$-\mathbf{S}$	cience
	U		\mathbf{O}				

Catalogue and color-magnitude diagram: An et al. ApJS 179, 328 (2008)

Crowded Field Cataloguing

Data: SDSS DR12 Catalog: An et al. ApJS 179, 328 (2008)

Traditional Catalogue Issues

Probabilistic Cataloguing

- Infer an *ensemble of catalogues*
- Naturally handles deblending ambiguities and source-source covariance

Catalogue Priors

• Prior that sources are independent and described by population parameters β :

$$\pi(\{\ell_i, \mathscr{E}_i, F_i\}_{i=1}^N, \beta) = \pi(\beta)\pi(N|\beta) \prod_{i=1}^N \pi(\ell_i, \mathscr{E}_i, F_i|\beta)$$

- β can describe both spatial and flux distributions
- What should the prior on the number of sources look like? What do we mean by "the number of sources"?

How many sources are there with a flux above F_{min} ?

• A prior that penalizes the (N + 1)th source based on the expected improvement in χ^2 under the null hypothesis that there are N sources:

$$\log \frac{\pi(N+1)}{\pi(N)} = -\frac{3}{2}$$

Reversible Jump MCMC

- Allows proposals to change dimensionality of model
 - Move *m* takes *x* and generates auxillary *u* to propose x'
 - Move m' takes x' and generates auxillary u' to propose x

• dim
$$x$$
 + dim u = dim x' + dim u' and $(x, u) \leftrightarrow (x', u')$ one-to-one
 $\alpha(x \to x') = \min\left(1, \frac{\pi(x')}{\pi(x)} \frac{\mathcal{L}(x'|D)}{\mathcal{L}(x|D)} \frac{j_{m'}(x')}{j_m(x)} \frac{g(u')}{g(u)} \left| \frac{\partial(x', u')}{\partial(x, u)} \right| \right)$

• For example, birth/death between $x = \{x_1, ..., x_N\}$ and $x' = \{x_1, ..., x_{N+1}\}$ has $u = x_{N+1}$ and $u' = \emptyset$

• If birth and death equally likely, sources independent in prior and new source x_2 generated from prior

$$\alpha(x \to x') = \min\left(1, \frac{\pi(N+1)}{\pi(N)} \frac{\mathcal{L}(x'|D)}{\mathcal{L}(x|D)}\right)$$

Traditional Catalogue

Compared to Hubble

Probabilistic Catalogue

Completeness

False Discovery Rate

Stacked Catalogue Ensemble

Condensed Catalogue

Conclusion

- The problem of crowded field photometry will be very relevant in the LSST era
- Probabilistic cataloguing infers an ensemble of catalogues, capturing deblending ambiguities and source-source covariance
- The ensemble of catalogues can be collapsed into a condensed catalogue that is *marginalized over deblending ambiguities and source-source covariance*
- Our probabilistic cataloguing implementation finds more sources in crowded fields than DAOPHOT
- While the current implementation is very slow, we expect to be able to speed it up considerably

For more details see arXiv:1703.01303

Backup Slides

Use Case Specifications

- + 40" × 40" from Messier 2 ($N_{pix} = 10\ 000$), 2' from centre
- Core radius 0.34', half-light radius 1.08'
- DAOPhot catalogue identifies 337 DAOPhot sources
- HST catalogue identifies 1 000 sources
- Run with about 250 CPU-hours (10⁹ model evaluations @ 1 CPU-ms each)

Residuals

Worst-Case Scenario

Worst-Case Residuals

Completeness (Condensed Catalogue)

False Discovery Rate (Condensed Catalogue)

Receiver Operating Curve

