

Reprocessing CFHT Deep fields with the (LSST DM) stack

Ph.Gris Laboratoire de Physique de Clermont IN2P3/CNRS (with help/ideas from P.Astier, D.Boutigny, N.Chotard, D. Fouchez, J.P. Reyes)

- Goals
- Attempts and achievements
- Next steps

2017/06/13

Reprocessing CFHT Deep fields with the stack

- Goals:
 - technical:
 - practise/exercise the production chain (easiness, relialibility, reproducibility, ...)
 - identify potential problems (if any/in case of bad luck)
 - effect of data size
 - science requirements:
 - quality of the production (performance in astrometry and photometry) for each step of the processing.
- Science case: extract the light curves of the Supernovae collected by CFHT
 - are we able to extract these light curves from the stack ?
 - Are they of sufficient quality to include the corresponding SN in the Hubble diagram ?
 - How does the quality compare with CFHT LCs ?

CFHT D3 field

- One of the four deep fields of CFHT
- 1x1 deg2 36 ccds
- RA= 14:19:27 (214.8625 deg) DEC= +52:40:56 (52.6822 deg)
- 121 SN candidates detected

D3 reprocessing is the first step. Others will be processed too

Reprocessing: the steps

Reprocessing: the steps

Reprocessing: the steps

- First step of L2: production of "Calibrated Exposure":
 - Calexp : A fully-qualified LSST image, which includes a science pixel array, and concomitant data including a quality mask and a variance array, in addition to a PSF characterization and metadata (including calibration metadata) about the image (https://confluence.lsstcorp.org/display/LSWUG/DMS+Glossary#DMSGlossary-C)
 - calibration
 - astrometry : reference catalog : SDSS ("old" release), PanSTARRS (w20)
 - photometry : reference catalog: SDSS
 - production of catalogs (sources) (stars and galaxies)
- Calexps to be produced
 - u : 153 x 36 = 5508
 - g: 542 x 36 = 19512
 - r: 645 x 36 = 23220

2736*36 = 98460 images

- i: 713 x 36 = 25668
- z: 682 x 36 = 25582

D3 : Calexps production status

"old" release

- filter u,g,r,i,z : > 99.6 % of the production completed
- We tried to get a clear view of the status of the processing:
 - python script accessible from ccage: python /sps/lsst/dev/lsstprod/CFHT/D3/ utils/Production_Status/processCcd/processCcdgui.py &

\varTheta 🔿 🔿 📉 ProcessCcd Status						
Filter r		Get Channel Status				
Field D3	3	Get Channel History				
Visit 91	19545	Get Goods				
ccd 02	2	Get Bads				
		Get Stats				

Number of events processed: 5508 / 5508 Nimages= 153 Number of events ok : 5499 frac = 0.998 Number of events not ok : 9 frac = 0.002 Fatal errors : 9 Problem : 1 event(s) No input matches : 2 event(s) Unable to match sources : 4 event(s) No sources remaining in match list after magnitude : 2 event(s)

Given the quality of input images, these numbers should, at some point, be equal to 100% (P.Astier)

- from the wiki page of the DESC reprocessing TF: <u>https://github.com/DarkEnergyScienceCollaboration/ReprocessingTaskForce/</u> <u>wiki/CFHT-D3-reprocessing-@.ccin2p3</u>
- Calexps: 8.5 Tb, catalogue: 761 Gb (fits)

Weekly w20

• Simplified log file analysis:

object visit filter runId date ccd expTime isr Ndetected aperture corr psf sigma Ndeblended Nsources astrometry scatter photometry zp status D3 788113 q 05AL01 2005-04-0 21 225.162 Yes 181 Yes 2.35 116 2144 "0.058 +- 0.029 arcse" 32.22821 0k D3 788113 g 05AL01 2005-04-0 22 225.162 Yes 215 Yes 2.31 143 1729 "0.066 +- 0.040 arcse" 32.253874 0k D3 788113 g 05AL01 2005-04-0 23 225.162 Yes 156 Yes 2.37 133 1833 "0.073 +- 0.045 arcse" 32.24846 0k D3 788113 g 05AL01 2005-04-0 24 225.162 Yes 153 Yes 2.38 114 1928 "0.056 +- 0.033 arcse" 32.235651 0k D3 788113 g 05AL01 2005-04-0 25 225.162 Yes 181 Yes 2.39 123 1628 "0.058 +- 0.025 arcse" 32.245081 0k D3 788113 g 05AL01 2005-04-0 26 225.162 Yes 169 Yes 2.44 129 1466 "0.077 +- 0.039 arcse" 32.240595 0k D3 788113 g 05AL01 2005-04-0 27 225.162 Yes 127 Yes 2.46 94 1977 "0.061 +- 0.035 arcse" 32.262429 0k D3 788113 g 05AL01 2005-04-0 28 225.162 Yes 171 Yes 2.4 136 1559 "0.058 +- 0.035 arcse" 32.261827 0k D3 788113 g 05AL01 2005-04-0 29 225.162 Yes 160 Yes 2.39 132 1952 "0.058 +- 0.031 arcse" 32.251591 0k D3 788113 g 05AL01 2005-04-0 30 225.162 Yes 152 Yes 2.39 130 1642 "0.061 +- 0.041 arcse" 32.243828 0k D3 788113 g 05AL01 2005-04-0 31 225.162 Yes 146 Yes 2.37 78 2010 "0.062 +- 0.030 arcse" 32.239847 0k D3 788113 q 05AL01 2005-04-0 32 225.162 Yes 173 Yes 2.34 127 1695 "0.050 +- 0.027 arcse" 32.232635 0k D3 788113 g 05AL01 2005-04-0 33 225.162 Yes 189 Yes 2.37 135 1801 "0.068 +- 0.038 arcse" 32.240328 0k D3 788113 g 05AL01 2005-04-0 34 225.162 Yes 174 Yes 2.45 119 1624 "0.063 +- 0.034 arcse" 32.23116 0k D3 788113 g 05AL01 2005-04-0 35 225.162 Yes 183 Yes 2.57 126 1634 "0.055 +- 0.035 arcse" 32.253916 0k

• Fraction of remaining files to be produced

Band	Frac
g	0.15%
r	0.15%
i	0.13%
Z	0.07%

Need to be understood and solved (cf Pierre's comment) -> need to classify errors

D3 : calexps production status

- Two major problems encountered:
 - attributed to afs problems:
 - on these workers: impossible to setup the release
 - systematic crash of the job submitted
 - this problem is transient, random and difficult to diagnose
 - Memory problems:
 - at the deblender level
 - identification: "bad::alloc" in error messages
 - appear in images crossed by KFO (P. Astier)

May be partly solved by increasing job memory (up to 16 Gb !)

A FOI is being implemented in the stack

"old" release

2017/06/13

٠

5e+02

jointcal

- simultaneous astrometry : fit astrometry positions (wcs, distorsions) using a large number of images -> see Pierre's presentation tomorrow
- primary wcs are given by the calexps
- from the calexps tagged as "good": apply jointcal.py (in the stack since w14 2017)
- bunches of 50 to 60 images to perform simultaneous astrometry
- Works fine, except for some cases where we get: jointcal INFO: Chi2/ndof : -nan/478730=-nan jointcal INFO: Chi2/ndof : nan/485930=nan jointcal INFO: Chi2/ndof : -nan/447770=-nan

Weekly w20

- This is not due to jointcal itself but to some sources that have bad (nan) values for centroids sigma and/or for shape_xx/yy
- Can be cured by modifying astrometrySourceSelector.py in meas_algorithms
- jointcal files (wcs) : 5.7 Gb

Astrometry from processCcd+jointcal

- miltimatch (1") on src -> groups of sources
- selection:
 - median_mag < 21.5
 - at least 20 sources per group

black : without jointcal
red : with jointcal

band	RMS(Ra*cos(Dec)) [mas]		RMS(Dec) [mas]		Nsources in [-50,50] mas
	jointcal			jointcal	
g	17.7	17.3	14.8	12.9	+53609 (0.2%)
r	14.9	14.2	14.0	12.4	+19686 (0.5%)
i	16.4	13.2	13.0	11.7	+15595 (0.5%)
Z	15.6	14.1	15.0	13.3	+14770 (0.9%)

Weekly w20

Science requirements

- Science requirements necessary to achieving scientific measurements of specific accuracy have been defined in four main science areas of LSST:
 - Dark matter and dark energy constraints (WL, SN)
 - Inventory of the Solar system
 - transient optical sky
 - mapping the Milky Way
- For each requirement, three reference values:
 - minimum specification : minimun capability or accuracy required in order to achieve its scientific aims
 - design specification: system design point; basis for developping engineering tolerances
 - stretch specification: enhance scientific return if achieved; pursued if no increase in cost, schedule or risk
- https://docushare.lsstcorp.org/docushare/dsweb/Get/LPM-17

Photometric quality (I)

- Repeatibility:
 - rms of the unresolved source magnitude distribution around the mean value
 - fraction of sources that deviate by more than x mmag from the mean

Quantity	design	minimum	stretch
PA1 [mmag]	5	8	3
PF1 (%)	10	20	15
PA2 [mmag]	15	15	10

- zeropoints:
 - rms of the internal photometric zero-point error
 - fraction of sources that deviate by more than x mmag from the mean

Quantity	design	minimum	stretch
PA3 [mmag]	10	15	5
PF2 (%)	10	20	5
PA4 [mmag]	15	20	15

Photometric quality (II)

- band-to-band(flux ratio) photometric calibration
 - accuracy of absolute band-to-band zero-point transformations (color zero-points) for main-sequence stars

Quantity	design	minimum	stretch
PA5 [mmag]	5	8	3
PA5 (with u)	10	15	5

- overall external absolute photometry
 - accuracy of photometric transformation to a physic scale

Quantity	design	minimum	stretch
PA6 [mmag]	10	20	5

Astrometric quality (I)

- relative astrometry:
 - rms of the astrometric distance distribution for stellar pairs with separation D arcmin will not exceed xx mas
 - fraction of the sample that deviate by more than xx mas from the median

	Quantity	design	minimum	stretch
Γ	AM1 [mas]	10	20	5
D = 1 arcmin	AF1 (%)	10	20	5
	AD1 [mas]	20	40	10
	AM2 [mas]	10	20	5
$D = 20 \operatorname{arcmin}$	AF2 (%)	10	20	5
	AD2[mas]	20	40	10
	AM3 [mas]	15	30	10
D = 200 arcmin	AF3(%)	10	20	5
L	AD3 [mas]	30	50	20

Astrometric quality (II)

- relative astrometry:
 - match an image (other than r) to a r band image
 - rms of the distance between the positions on the two frames:
 - will not exceed x mas
 - fraction of measurements deviating by more than x mas from the mean

Quantity	design	minimum	stretch
AB1 [mas]	10	20	5
ABF1 (%)	10	20	5
AB2 [mas]	20	40	10

- Absolute astrometry:
 - transformation to an external system with a median accuracy

Quantity	design	minimum	stretch
AA1 [mas]	50	100	20

Science requirements

- validate_drp : a python package that estimates some quantities related to science requirements (https://github.com/lsst/validate_drp.git):
 - photometry: PA1, PA2, PF1
 - astrometry: AM1->3, AF1->3, AD1->3
- On the calexps produced with w20:

validate_drp on calexps: photometry

Science requirements: photometry

Same kind of results for r and i bands : minimum requirements not reached

Science requirements: photometry

		r		i		Z	
		meas	ref	meas	ref	meas	ref
	stretch		3		3		4.5
PA1	minimum	15.3	8	14.6	8	20.8	12
[mmag]	design		5		5		7.5
	stretch	52.9	5	47.3	5	50.5	5
PF1	minimum	34.4	20	33.6	20	35.4	20
[%]	design	34.4	10	33.6	10	35.4	10
	stretch	42.4	10	41.1	10	59.3	15
PA2	minimum	22.7	15	20.9	15	34.5	22.5
[mmag]	design	32.6	15	32.2	15	46.7	22.5

Science requirements: astrometry

Science requirements: astrometry

black : without jointcal
red : with jointcal

Quantity	r			i			Z		
	design	minimum	stretch	design	minimum	stretch	design	minimum	stretch
AM1	N/Y	Y/Y	N/N	N/Y	Y/Y	N/N	N/N	N/Y	N/N
AF1	Y/Y	Y/Y	N/Y	Y/ Y	Y/Y	N/N	N/N	Y/Y	N/N
AD1	Y/Y	Y/Y	N/Y	Y/Y	Y/Y	N/N	N/N	Y/Y	N/N
AM2	N/Y	Y/Y	N/N	N/Y	Y/Y	N/N	N/N	Y/Y	N/N
AF2	Y/Y	Y/Y	N/Y	Y/Y	Y/Y	N/N	Y/Y	Y/Y	N/N
AD2	Y/Y	Y/Y	N/Y	Y/Y	Y/Y	N/N	Y/Y	Y/Y	N/N

minimum requirement : ok (jointcal or not) design requirement : ok r and y with jointcal, partly for z stretch requirement : partly for r and i, with jointcal

Coaddition

- Coaddition steps:
 - CoaddTempExp -> ok
 - AssembleCoadd -> ok
 - MultiBandProcessing:
 - detectCoaddSources -> ok
 - mergeCoaddDetections -> ok
 - measureCoaddSources -> ok
 - mergeCoaddMeasurements -> ok

"ok" here just mean "went up to the end with no crash". It is not a "quality" statement. At some point, this "quality" will have to be estimated (validation)

Workshop - Lyon 2017

Coaddition

- Coaddition step performed for one season:
 - season 2
 - calexps selected : lowest psf (30%)

Coaddition

• Coaddition step validation : stellar locus plot

Coaddition

- Coaddition step validation : multimatch (afw,1") between catalogs:
 - SDSS and CFHT

Coaddition

- Coaddition step validation : multimatch (afw, 1") between catalogs:
 - SDSS and Stack

Only 57 sources matched !?!

- Used the coadded (multiband) sources to perform a forced photometry
- Quite a lot of warnings/errors during processing:

```
forcedPhotCcd.measurement WARNING: Error in base_CircularApertureFlux.measure on record 5498900345556:

File "src/image/Image.cc", line 92, in static lsst::afw::image::ImageBase<PixelT>::_view_t

lsst::afw::image::ImageBase<PixelT>

::_makeSubView(const Extent2I&, const Extent2I&, const _view_t&) [with PixelT = float;

lsst::afw::image::ImageBase<PixelT>::_vie

w_t =

boost::gil::image_view<boost::gil::memory_based_2d_locator<boost::gil::memory_based_step_iterator<boost::gil::pixel<flo

at,

boost::gil::layout<boost::mpl::vector1<boost::gil::gray_color_t> >*>>>; lsst::afw::geom::Extent2I =

lsst::afw::geom::Extent

<int, 2>]

Box2I(Point2I(-1114,-4627),Extent2I(0,0)) doesn't fit in image 15x15 {0}

lsst::pex::exceptions::LengthError: 'Box2I(Point2I(-1114,-4627),Extent2I(0,0)) doesn't fit in image 15x15'
```

Forced photometry

• Photometry checks : coadded sources <-> forced sources

Forced Photometry - ccd 0

Forced photometry

Photometry checks : coadded sources <-> forced sources

Forced photometry

- Let us try to grab a type Ia supernova
- From the list of JLA SN, did a (ra,dec) match to identify Sne in our D3 (season 2) sample
- Get the LC from forced photometry sources

Forced photometry

- Let us try to grab a type Ia supernova
- From the list of JLA SN, did a (ra,dec) match to identify Sne in our D3 (season 2) sample
- Get the LC from forced photometry sources

Image differencing

- For each of the five bands:
 - subtract the calexps from one reference image of the period (ImageDifference)
 - lots of errors during the processing:

imageDifference.measurement WARNING: Error in base_PsfFlux.measure on record 123127297808007983:

File "src/PsfFlux.cc", line 132, in virtual void

lsst::meas::base::PsfFluxAlgorithm::measure(lsst::afw::table::SourceRecord&,

const lsst::afw::image::Exposure<float>&) const

Invalid pixel value detected in image. {0}

lsst::meas::base::PixelValueError: 'Invalid pixel value detected in image.'

At least three measurements in g,r,i

Ra

Image differencing

- For each of the five bands:
 - subtract the calexps from one reference image of the period (ImageDifference)
 - lots of errors during the processing:

imageDifference.measurement WARNING: Error in base_PsfFlux.measure on record 123127297808007983:

File "src/PsfFlux.cc", line 132, in virtual void

lsst::meas::base::PsfFluxAlgorithm::measure(lsst::afw::table::SourceRecord&,

const lsst::afw::image::Exposure<float>&) const

Invalid pixel value detected in image. {0}

lsst::meas::base::PixelValueError: 'Invalid pixel value detected in image.'

At least three measurements in g,r,i

Ra

Automated Data Reprocessing

- For the results presented in this talk : processing steps were performed using a bunch of python (and shell) scripts
- A DESC work-flow engine has been developped @SLAC and is currently used for Twinkles
- SRS pipeline : "Software mechanism for organizing and executing massively parallel computing projects"
- Pipeline main characteristics
 - Automated submission and monitoring of batch jobs
 - Web interface for monitoring and submiting tasks
 - Processing steps : XML files
 - Can run jobs at SLAC and CC-IN2P3
- We have started testing it @CC
- Not that easy Some tuning probably necessary...but could be an efficient tool to process data (full chain) with the LSST stack

Summary

- The LSST DM processing chain has been exercised up to the image differencing step.
- Exercise being repeated with recent releases
- Some tools (validate_drp) are available to estimate the quality of the data produced.
- Target : processing the D3 field (up to forced photometry) in ~ one week and a half (now calexps in two-three days) -> automated data processing ?
- What may be difficult : to grab a release for which all the processing steps are functional (or to have few releases compatible where some of the steps are working).