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Motivation

[Planck 2015 results: XX.]

Many Inflation models are consistent with a given      and   . ns r

How can we distinguish between models?



Motivation
Here: focus on axion monodromy inflation.

• One of the most promising approaches to large field inflation.

• Model of axion inflation inflation with a potential:
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 McAllister, Silverstein, Westphal 2008]
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From now on focus on the ‘reheating region’ of the potential
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From now on focus on the ‘reheating region’ of the potential 

• If the modulations are large enough the potential exhibits many minima.

• The inflaton will eventually settle in one of the minima.

• Interestingly, a phase decomposition can occur.
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• A phase decomposition can occur.

• Bubbles of the true vacuum B will expand and collide.

• Expect the emission of Gravitational Waves.

Motivation

A

B

B

B

B



Outline

A

B

B

B

1. When can 
we have a phase 
decomposition?

2. Quantify 
the Gravitational 

Wave signal



• Quantify the probability for phase decomposition.
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• Quantify the probability for phase decomposition:

• Now determine       and        in terms of the model parameters. 
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• Have many minima for            .

Calculate loss of energy density       in a half-period.
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• Have many minima for            .

Calculate loss of energy density       in a half-period. 

• At time of question universe is matter-dominated 
by coherent oscillations of inflaton.

• The period of oscillation is set by the curvature of the wells.

• Know the energy density in the lowest wells.
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Now turn to the size of fluctuations.

We will consider 2 sources of fluctuations:

1. Classical fluctuations from Inflation: 

Start as quantum           stretched to superhorizon scales
classicalize           re-enter horizon after inflation when             .

2. Quantum fluctuations: 

Consider the inherent quantum fluctuation of any quantum field.

Translate this into expressions for      . 
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Decomposition probabilities: 

1. Classical fluctuations: 

2. Quantum fluctuations: 
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Decomposition probabilities: 

1. Classical fluctuations: 

2. Quantum fluctuations: 

Numerical example:                   ,                        .  
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Decomposition probabilities: 

1. Classical fluctuations: 

2. Quantum fluctuations: 

Observations: 

• Phase decomposition can generically occur in axion monodromy 
potentials with sufficiently large modulations.     

• There can be further enhancement of fluctuations due to parametric 
resonance.  Difficult to study analytically.  Turn to numerics…
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Quantify the  
Gravitational Wave  

signal



Review Gravitational Wave generation from bubble collisions during a 
first-order phase transition.

1. GWs generated by 3 effects: 
• Collision of bubble walls
• Sound waves in the fluid 
• Turbulence in the fluid

Gravitational Wave Signal

[Kosowsky, Turner, Watkins 1992;
 Grojean, Servant 2006]



Review Gravitational Wave generation from bubble collisions during a 
first-order phase transition.

1. GWs generated by 3 effects: 
• Collision of bubble walls 
• Sound waves in the fluid 
• Turbulence in the fluid

2. Envelope approximation works well 
• neglect complicated overlap regions 
• only focus on bubble walls and their evolution
• agrees well with numerical results

Gravitational Wave Signal
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Overall,  spectrum and amount of gravitational radiation depended 
only on the gross features of the bubble collisions.

Relevant quantities: 

• Typical time scale / bubble separation:  

• Ratio of energy density released    vs. energy density of thermal bath       :

• Efficiency factor :     

Gravitational Wave Signal
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• Typical time scale / bubble separation:  
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Specialise to our situation: have bubbles in a ‘fluid’ due to coherent 
oscillations of the inflaton.  

Relevant quantities: 

• Take optimistic value:   

• Ratio of energy density released    vs. energy density of thermal bath        :

Results: 

• Energy released in GW at peak frequency               : 

Gravitational Wave Signal

✏

� ⇠ H
matter fluid

⇢mat

⌘ ⌘ ✏

⇢mat
=

m2��2

⇤4
=

m2f2

m2f2
= �1

⌦
GW

=
⇢
GW

⇢
tot

= ✓0

✓
H

�

◆
⌘2

(1 + ⌘)2

! ' ��



• In the envelope approximation, one can calculate the full spectrum rather 
than just the value at the peak. Multiply the above by              .

• Finally, propagate the result to today. Need to make assumptions regarding 
matter vs. radiation domination immediately after phase transition

• Here: assume radiation-domination immediately after transition
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Gravitational Wave Signal
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Conclusions

• Modulations of axion monodromy potential may dynamically 
induce a phase decomposition after inflation.

• Gravitational Waves are then sourced by bubble collisions. 
Interesting signature of axion monodromy models.

• For                      a phase decomposition is unlikely, but a GW 
signal would be stronger.

• For                      phase decompositions can generically occur, 
but the GW signal is weakened if many bubbles are created. 

• A better understanding of bubble collisions in a matter fluid is 
desirable!
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