Probing the Early Universe with Gravity — 23 November 2016

More Gravitational Waves From Axion Monodromy

Lukas Witkowski

1606.07812

with Arthur Hebecker,

Joerg Jaeckel

& Fabrizio Rompineve

Many Inflation models are consistent with a given n_s and r.

How can we distinguish between models?

Here: focus on axion monodromy inflation.

[Silverstein, Westphal 2008; McAllister, Silverstein, Westphal 2008]

- One of the most promising approaches to large field inflation.
- Model of axion inflation inflation with a potential:

$$V \sim \mu^{4-p}\phi^p + \Lambda^4 \cos\left(\frac{\phi}{f} + \gamma\right)$$

Polynomial potential (due to branes / fluxes)

"Instantonic" contribution

Here: focus on axion monodromy inflation.

[Silverstein, Westphal 2008; McAllister, Silverstein, Westphal 2008]

- One of the most promising approaches to large field inflation.
- Model of axion inflation inflation with a potential:

$$V \sim \mu^{4-p} \phi^p + \Lambda^4 \cos\left(\frac{\phi}{f} + \gamma\right)$$

Inflaton potential

Modulations

Here: focus on axion monodromy inflation.

$$V \sim \frac{1}{2}m^2\phi^2 + \Lambda^4 \cos\left(\frac{\phi}{f} + \gamma\right)$$

$$-M_{pl}$$

Here: focus on axion monodromy inflation.

$$V \sim \frac{1}{2}m^2\phi^2 + \Lambda^4\cos\left(\frac{\phi}{f} + \gamma\right)$$

Here: focus on axion monodromy inflation.

$$V \sim \frac{1}{2}m^2\phi^2 + \Lambda^4\cos\left(\frac{\phi}{f} + \gamma\right)$$

Here: focus on axion monodromy inflation.

$$V \sim \frac{1}{2}m^2\phi^2 + \Lambda^4\cos\left(\frac{\phi}{f} + \gamma\right)$$

Here: focus on axion monodromy inflation.

$$V \sim \frac{1}{2}m^2\phi^2 + \Lambda^4\cos\left(\frac{\phi}{f} + \gamma\right)$$

Here: focus on axion monodromy inflation.

$$V \sim \frac{1}{2}m^2\phi^2 + \Lambda^4\cos\left(\frac{\phi}{f} + \gamma\right)$$

$$V \sim \frac{1}{2}m^2\phi^2 + \Lambda^4\cos\left(\frac{\phi}{f} + \gamma\right)$$

$$V \sim \frac{1}{2}m^2\phi^2 + \Lambda^4\cos\left(\frac{\phi}{f} + \gamma\right)$$

- If the modulations are large enough the potential exhibits many minima.
- The inflaton will eventually settle in one of the minima.
- · Interestingly, a phase decomposition can occur.

- If the modulations are large enough the potential exhibits many minima.
- The inflaton will eventually settle in one of the minima.
- Interestingly, a phase decomposition can occur.

- If the modulations are large enough the potential exhibits many minima.
- The inflaton will eventually settle in one of the minima.
- Interestingly, a phase decomposition can occur.

- · If the modulations are large enough the potential exhibits many minima.
- The inflaton will eventually settle in one of the minima.
- Interestingly, a phase decomposition can occur.

- · If the modulations are large enough the potential exhibits many minima.
- The inflaton will eventually settle in one of the minima.
- Interestingly, a phase decomposition can occur.

• A phase decomposition can occur.

- Bubbles of the true vacuum **B** will expand and collide.
- Expect the emission of Gravitational Waves.

<u>Outline</u>

• Quantify the **probability** for phase decomposition.

• Quantify the **probability** for phase decomposition.

• Quantify the **probability** for phase decomposition.

• Quantify the **probability** for phase decomposition:

$$\mathcal{P} \sim rac{\delta
ho}{\Delta
ho}$$

• Now determine $\delta \rho$ and $\Delta \rho$ in terms of the model parameters.

$$V \sim \frac{1}{2}m^2\phi^2 + \kappa m^2 f^2 \cos\left(\frac{\phi}{f} + \gamma\right)$$

• Have many minima for $\kappa \gtrsim 1$.

Calculate loss of energy density $\Delta \rho$ in a half-period.

$$V \sim \frac{1}{2}m^2\phi^2 + \kappa m^2 f^2 \cos\left(\frac{\phi}{f} + \gamma\right)$$

• Have many minima for $\kappa \gtrsim 1$.

Calculate loss of energy density $\Delta \rho$ in a half-period.

- At time of question universe is matter-dominated by coherent oscillations of inflaton.
- The period of oscillation is set by the curvature of the wells.
- Know the energy density in the lowest wells.

$$\Delta \rho \sim \kappa \frac{m^2 f^3}{M_{pl}}$$

Now turn to the size of **fluctuations**.

We will consider 2 sources of fluctuations:

I. Classical fluctuations from Inflation: $\delta\phi_k^{inf}$

Start as quantum \longrightarrow stretched to superhorizon scales \longrightarrow classicalize \longrightarrow re-enter horizon after inflation when $H \sim k$.

2. Quantum fluctuations: $\delta \phi_k^{qu} \sim k$

Consider the inherent quantum fluctuation of any quantum field.

Translate this into expressions for $\delta \rho$.

Decomposition probabilities:

I. Classical fluctuations:
$$\mathcal{P}^{inf} = \frac{\delta \rho^{inf}}{\Delta \rho} \sim \kappa^{-1/3} \left(\frac{m}{M_{pl}}\right) \left(\frac{M_{pl}}{f}\right)^{5/3}$$

2. Quantum fluctuations:
$$\mathcal{P}^{qu} = \frac{\delta \rho^{qu}}{\Delta \rho} \sim \kappa \left(\frac{m}{M_{pl}}\right)^2 \left(\frac{M_{pl}}{f}\right)^3$$

Decomposition probabilities:

I. Classical fluctuations:
$$\mathcal{P}^{inf} = \frac{\delta \rho^{inf}}{\Delta \rho} \sim \kappa^{-1/3} \left(\frac{m}{M_{pl}}\right) \left(\frac{M_{pl}}{f}\right)^{5/3}$$

2. Quantum fluctuations:
$$\mathcal{P}^{qu} = \frac{\delta \rho^{qu}}{\Delta \rho} \sim \kappa \left(\frac{m}{M_{pl}}\right)^2 \left(\frac{M_{pl}}{f}\right)^3$$

Numerical example: $\kappa \sim \mathcal{O}(10)$, $m \sim 10^{-5} M_{pl}$.

	\mathcal{P}^{inf}	\mathcal{P}^{qu}
$f \sim 10^{-2} M_{pl}$	~ 0.01	~ 0.001
$f \sim 10^{-3} M_{pl}$	~ 0.1	~ 1

Decomposition probabilities:

I. Classical fluctuations:
$$\mathcal{P}^{inf} = \frac{\delta \rho^{inf}}{\Delta \rho} \sim \kappa^{-1/3} \left(\frac{m}{M_{pl}}\right) \left(\frac{M_{pl}}{f}\right)^{5/3}$$

2. Quantum fluctuations:
$$\mathcal{P}^{qu} = \frac{\delta \rho^{qu}}{\Delta \rho} \sim \kappa \left(\frac{m}{M_{pl}}\right)^2 \left(\frac{M_{pl}}{f}\right)^3$$

Observations:

- Phase decomposition can generically occur in axion monodromy potentials with sufficiently large modulations.
- There can be further **enhancement** of fluctuations due to parametric resonance. Difficult to study analytically. Turn to numerics...

Review **Gravitational Wave generation** from **bubble collisions** during a first-order phase transition.

[Kosowsky, Turner, Watkins 1992; Grojean, Servant 2006]

. GWs generated by 3 effects:

- Collision of bubble walls
- Sound waves in the fluid
- Turbulence in the fluid

Review **Gravitational Wave generation** from **bubble collisions** during a first-order phase transition.

[Kosowsky, Turner, Watkins 1992; Grojean, Servant 2006]

. GWs generated by 3 effects:

- Collision of bubble walls
- Sound waves in the fluid
- Turbulence in the fluid

2. Envelope approximation works well [Kosowsky, Turner, Watkins 1992]

- neglect complicated overlap regions
- only focus on bubble walls and their evolution
- agrees well with numerical results

Overall, spectrum and amount of gravitational radiation depended only on the gross features of the bubble collisions.

Relevant quantities: [Grojean, Servant 2006]

- Typical time scale / bubble separation: β^{-1}
- Ratio of energy density released ϵ vs. energy density of thermal bath ρ_{rad} :

$$\eta \equiv \frac{\epsilon}{\rho_{rad}}$$

• Efficiency factor: λ

• Bubble velocity: v_b

Overall, spectrum and amount of gravitational radiation depended only on the gross features of the bubble collisions.

Relevant quantities:

- Typical time scale / bubble separation: β^{-1}
- Ratio of energy density released ϵ vs. energy density of thermal bath ρ_{rad} :

$$\eta \equiv \frac{\epsilon}{\rho_{rad}}$$

• Efficiency factor: λ

• Bubble velocity: v_b

Results:

• Energy released in GW at peak frequency $\omega \simeq \sigma \beta$:

$$\Omega_{GW} = \frac{\rho_{GW}}{\rho_{tot}} = \theta \left(\frac{H}{\beta}\right) \lambda \frac{\eta^2}{(1+\eta)^2} v_b^3$$

Specialise to our situation: have bubbles in a 'fluid' due to coherent oscillations of the inflaton.

Relevant quantities:

• Take optimistic value: $\beta \sim H$

matter fluid

• Ratio of energy density released ϵ vs. energy density of thermal bath ρ_{mat} :

$$\eta \equiv \frac{\epsilon}{\rho_{mat}} = \frac{m^2 \Delta \phi^2}{\Lambda^4} = \frac{m^2 f^2}{\kappa m^2 f^2} = \kappa^{-1}$$

Results:

• Energy released in GW at peak frequency $\omega \simeq \sigma \beta$:

$$\Omega_{GW} = \frac{\rho_{GW}}{\rho_{tot}} = \theta_0 \left(\frac{H}{\beta}\right) \frac{\eta^2}{(1+\eta)^2}$$

$$\Omega_{GW} = \frac{\rho_{GW}}{\rho_{tot}} = \theta_0 \left(\frac{H}{\beta}\right) \frac{\eta^2}{(1+\eta)^2}$$
 for $\omega \simeq \sigma \beta$

- In the envelope approximation, one can calculate the **full spectrum** rather than just the value at the peak. Multiply the above by $S_{env}(\omega)$.
- Finally, propagate the result to today. Need to make assumptions regarding matter vs. radiation domination immediately after phase transition
- Here: assume radiation-domination immediately after transition

$$\theta_0 = 10^{-2}$$

$$\sigma = 10^{-1}$$

$$m = 10^{-5} M_{pl}$$

$$\Omega_{GW}(t_0)h^2 \sim \frac{T_{RH}^{4/3}}{\kappa^{8/3}}$$

$$\omega_0 \sim \frac{T_{RH}^{7/3}}{\kappa^{5/12} f^{1/2}}$$

Blue:
$$f = 10^{-1} M_{pl}$$

$$\kappa = 5$$

$$T_{RH} = 10^{12} \text{GeV}$$

Brown:
$$f = 10^{-2} M_{pl}$$

$$\kappa = 10$$

$$\kappa = 10$$
 $T_{RH} = 10^{11} \text{GeV}$

Red:
$$f = 10^{-3} M_{pl}$$

$$\kappa = 70$$

$$\kappa = 70$$
 $T_{RH} = 10^{11} \text{GeV}$

Conclusions

- Modulations of axion monodromy potential may dynamically induce a phase decomposition after inflation.
- Gravitational Waves are then sourced by bubble collisions. Interesting signature of axion monodromy models.
- For $f \gtrsim 10^{-2} M_{pl}$ a phase decomposition is **unlikely**, but a GW signal would be **stronger**.
- For $f \lesssim 10^{-2} M_{pl}$ phase decompositions can **generically occur**, but the GW signal is **weakened** if many bubbles are created.
- A better understanding of bubble collisions in a matter fluid is desirable!

