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The Gravitational Universe

• The recent first detection of gravitational 
waves in the fabric of spacetime, has 
opened up a new way to study our 
Universe 

• One very exciting, but challenging 
prospect, is the measurement of 
primordial gravitational waves  
(PGW) produced in the very early 
universe during cosmological 
inflation

[LIGO collaboration, ’15]

(t ⇠ 10�34sec) [Guth, ’81; Linde, ’82]



The CMB and PGW

• During an inflationary epoch, quantum fluctuations 
stretched to observables scales. These fluctuations 
seeded perturbations in the temperature of the cosmic 
microwave background (CMB) and ultimately lead to large 
scale structure formation. 

• The dominant contribution to the CMB 
temperature anisotropies are from 
density perturbations, while gravitational 
waves lead to a special pattern, B-modes, 
in the CMB polarisation. 

[Mukhanov, Chibisov, ’81]

[Zaldarriaga, Seljak, ’96]
[Kamionokowski, et al. ’96]



Primordial Gravity Waves from Inflation

Primordial Gravitational Waves are a robust prediction of 
inflation, however their amplitude depends on the 
inflationary model and in particular the inflationary scale. 

Their amplitude can be encoded in the tensor to scalar 
ratio of the power spectra

r ⌘ Pt

P⇣
= 16 ✏

where     is the first inflationary slow-roll parameter ✏



 (B-modes in the lensing distortions of the 21 cm radiation emitted by 
hydrogen atoms during the reionisation epoch could reach                ) r ⇠ 10�9

• Current bounds on the tensor-to-scalar ratio, 
r, from BICEP/Keck set at 

[BICEP/Keck, ’15]

r < 0.07

r ⇠ 10�4

Current bound

Future prospects

[Polarized Radiation Imaging and Spectroscopy Mission, PRISM]

• Future experiments such as PRISM 
may reach sensitivities of 
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PGW’s in String Inflation 

An upper bound on r



Observations are consistent with the simplest EFT inflation 
model with single canonically normalised scalar field, 
coupled minimally to gravity, whose potential 
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Observations are consistent with the simplest EFT inflation 
model with single canonically normalised scalar field, 
coupled minimally to gravity, whose potential 

INFLATION IN EFT

V (�) = Vren(�) +
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drives a prolonged epoch of slow-roll inflation encoded in 
the potential slow-roll parameters 

φ
φi φf

δφ

slow-roll inflationV (φ)

Cosmological parameters can be 
written in terms of slow-roll parameters:

• Spectral index ns = 1� 6✏+ 2⌘

r ⌘ Pt

P⇣
= 16✏• Tensor-2-scalar



PRIMORDIAL GRAVITY WAVES AND  r

φiφf

δφ
V (φ)

��

[Lyth, ’96; Boubekeur-Lyth, ’05]

‣ The inflaton field range

‣ The scale of inflation

[García-Bellido, Roest, Scalisi, IZ ’14]
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inflationary scale is close to the GUT scale for values of 
r as small as   r ⇠ 10�5!

➠ inflation mechanism very sensitive to UV physics

The tensor to scalar ratio can be related to 



INFLATION IS SENSITIVE TO UV PHYSICS

• Unknown physics above UV cutoff parameterised 
by higher dimensional operators:

• All inflation models are sensitive Planck suppressed 
corrections to the potential: η-problem  

• Large field inflationary models are sensitive to all Planck 
suppressed interactions. 

• Higher order corrections to         generically spoil slow roll 
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Opportunity to connect quantum gravity to observations 
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To suppress dangerous contributions to the inflaton V, 
invoke a symmetry: inflaton is an axion (PNGB) with 
continuous global shift symmetry

� ! �+ a

Axion Inflation 

Break the symmetry in a controlled way



To suppress dangerous contributions to the inflaton V, 
invoke a symmetry: inflaton is an axion (PNGB) with 
continuous global shift symmetry

Axion Inflation 

• Natural Inflation: [Freese-Frieman-Linto, ’90]

 [Kaloper-Sorbo ’08]• Chaotic (monomial) Inflation: 

broken by non-perturbative effects to a 
discrete symmetry V = V0(1� cos(�/f))

f axion decay constant (symmetry scale)

broken spontaneously (e.g. due to coupling 
to background fluxes) V = V0 �

n

(V = V0(q + µ�)2)
�� ⇠ 15MPl

f & 7MPl

(n = 2)



Plateau-like Inflation

Another possibility is to realise a shift symmetry for large 
values of the scalar field 
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Starobinsky-lilke
[Starobinsky, ’80]



Planck 2015

Chaotic and natural inflation strongly disfavoured compared to
Starobinsky/Higgs inflation.

Susha Parameswaran Axion Inflation in String Theory 10/19

Planck-Bicep/Keck 15
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Inflation in String Theory

In string theory, several scalar fields arise, which can be 
potential candidates to drive inflation with shift symmetry

‣ Axions descend from gauge fields or their generalisations, 
p-forms wrapping p-cycles in compact 6D: AM1...Mp

AM ,

‣ Plateau-like potentials arise naturally for scalar fields 
associated to the sizes of the 6D compact space 
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Inflation in String Theory

Prescription for string inflationary models:

Start with perturbative expansion of string theory in 10D: 
10D supergravity at weak coupling 

Compactify from 10D to 4D + 6D (compact) 

Stabilise all scalar fields not relevant for inflation (moduli 
stabilisation) 

LEEFT ingredients:

gs ⌧ 1 ,

↵0/L2 ⌧ 1

string weak coupling 

perturbative string expansion

typical compactification scale 

D-BraneInflation D-BraneInflation D-BraneInflation
ConsidertypeIIstringtheorycom-
pactifiedon.(Inwhatfollows
wetake)

Apairof-branesexpandingthe
fullandwrappingdimen-
sionsinthecompactspace.M4X6

Y

The-branesareseparatedbya
distanceinthecompact
space.

Potentialforthe4dscalarfieldas-
sociatedtoiscalculablefromstring
theory,andisgivenby

(;modeldependent).
Y

One loop
openstring

D−braneD−brane

closed 
Tree level

string

Thedistancebetweenthebranesplaystheroleoftheinflatonfield!
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Inflation in String Theory

Minf < Mkk . Ms . MPl

(Ms = 1/`s , ↵0 = `2s/(2⇡)
2)

Ms =
gsp
4⇡Vw

6

MPl

4D EFT regime

10D EFT regime

10D String Theory regime

To ensure a valid 4D EFT description throughout the 
inflationary epoch, any string model of inflation has to 
feature the hierarchy of scales

where
Minf

Mkk

Ms

MPl

[Baumann, McAllister, ’14] 
[Mazumdar, Shukla, ’14] 

[Kooner, Parameswaran, IZ, ’15] 
[Burgess, Cicoli, de Alwis, Quevedo, ’16] 

[Parameswaran, IZ, ’16]

Otherwise we cannot neglect massive string excitations, 
Kaluza-Klein modes and extra dimensions 



Inflation in String Theory

Minf < Mkk . Ms . MPl

(Ms = 1/`s , ↵0 = `2s/(2⇡)
2)

Ms =
gsp
4⇡Vw

6

MPl

4D EFT regime

10D EFT regime

10D String Theory regime

To ensure a valid 4D EFT description throughout the 
inflationary epoch, any string model of inflation has to 
feature the hierarchy of scales

where

➠ tight constraints on high scale, large field 
inflationary models in string theory

Minf

Mkk

Ms

MPl

Recalling that

[Baumann, McAllister, ’14] 
[Mazumdar, Shukla, ’14] 

[Kooner, Parameswaran, IZ, ’15] 
[Burgess, Cicoli, de Alwis, Quevedo, ’16] 

[Parameswaran, IZ, ’16]
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Natural inflation in string theory: hard to realise as 
symmetry breaking scale, f, needs to be super-
Planckian to drive successful inflation 
Axions from closed strings tightly constrained.   

Plateau-like potentials: Fiber inflation. A scalar field 
associated to size of internal cycles has potential 

Figure 1: V versus �̂ for k = 2/
p
3 and R = 2.25 · 10�5.

Figure 2: ✏ and ⌘ versus �̂ for k = 2/
p
3 and R = 2.25 · 10�5.

3.2 Robustness

Let us make a few comments on the robustness of these models:

• KK loop corrections are generically present in any CY compactification while winding

loop corrections are more model dependent since they depend on the brane setup and

the topology of the internal space.

• Winding loop corrections are under better control than KK loops since, due to the

extended no-scale cancellation, 1- and 2-loop KK e↵ects lead to competing contributions

to the scalar potential.

• When they are present and have the correct sign, winding loop corrections generate

a plateau region which is suitable to drive inflation. The robust prediction of this

inflationary scenario is the relation (3.36) between r and ns.

– 21 –

[Burgess, Cicoli, de Alwis, Quevedo, ’16]

[Banks, Dine, Fox & Gorbatov, ’03]

[Kooner, Parameswaran, IZ, ’15]

Numerical control, but not 
parametric control. Very sensitive to 
numerical factors and parameter 
values

[ Cicoli, Burgess, Quevedo, ’08]

[Arkani-Hamed,Motl,Nicolis,Vafa, ’06]

Large Field Explicit Models? 

However, open string (and multifield) axion models  
models may work (need explicit construction)



Large Field Explicit Models? 

Natural inflation in string theory: hard to realise as 
symmetry breaking scale, f, needs to be super-
Planckian to drive successful inflation 

Plateau-like potentials: Fiber inflation. A scalar field 
associated to size of internal cycles has potential 

Axion monodromy. Repeatedly traverse 
the sub-Planckian fundamental period. 
No explicit model known  

[Westphal-Silverstein, ’08, ’14]

[Banks, Dine, Fox & Gorbatov, ’03]

[Burgess et al. ’08, ’16]

Axions from closed strings tightly constrained.   

[Kooner, Parameswaran, IZ, ’15]

[Arkani-Hamed,Motl,Nicolis,Vafa, ’06]

However, open string (and multifield) axion models  
models may work (need explicit construction)



UPPER BOUND ON    IN STRING INFLATIONr
[Parameswaran, IZ, ’16]

Using relation between r, the scale of inflation and the 
relation between Ms and MPl we can write: 

(ms = 1/
p
↵0)

(Ms = 2⇡/
p
↵0)

☞ very sensitive to values of parameters due to 4th power

3

where gs is the string coupling, Ms = 1/ℓs is the string scale (with α′ = ℓ2s/(2π)
2) and V6 is the

possibly warped, string-frame volume of the six extra dimensions in string units. Then, using (1)
and (4), the tensor-to-scalar ratio can be written in terms of the hierarchies in (3):

r = 3.1× 108
(

Minf

mkk

)4(mkk

ms

)4 ( gs√
V6

)4

. (5)

Note that r is very sensitive to mild changes in gs, volumes/curvatures (including numerical 2π
factors) and mass hierarchies, due to the fourth powers in (5). Assuming V6l6s ∼ βL6 and asking for
mass-squared hierarchies3 and string coupling to be less than some small number, δ, this implies
V6 > β/((2π)6δ3) and a simple bound4 on r:

r < 3.1× 108
(2π)12

β2
δ14. (6)

For example, assuming a torus with β ∼ (2π)6, and asking conservatively that δ ! 0.1 (so Minf ∼
0.3mkk ∼ 0.3ms) gives:

r ! 3.1× 10−6 . (7)

Relaxing the couplings and mass hierarchies to δ ! 0.2 (so Minf ∼ 0.45mkk ∼ 0.45ms) allows:

r ! 0.05 . (8)

We see that any observable r from string theory will depend sensitively on explicit numerical factors
and, moreover, be right at the limits of validity of the 4D EFT.

Note that in explicit, controlled string constructions r tends to be small. For example, in axion
monodromy models, long warped throats within throats are used to prevent brane anti-brane
annihilation and suppress brane backreaction [19, 20]. The large internal volume then drives the
string scale down, and thus – via (3) and (1) – also Minf and r down. Similarly, fibre inflation is
realised using the LARGE volume scenario, where internal volumes are large order to keep moduli
stabilisation under control [21, 25]. Any claim of large r in string theory must examine carefully
whether numerical factors in explicit models allow the required hierarchy (3) to be achieved, and
check that corrections to the 4D EFT are sufficiently suppressed. For example, fiber inflation5

might achieve r ∼ 10−3 with V6 ∼ 125 and δ ∼ 0.2, plausibly at the limits of control.
Let us now comment on the robustness of the bounds obtained above. First, one could try to

evade the bounds by going to strong coupling gs > 1 or strong curvatures L/ℓs < 1, to drive ms,
mkk to higher values. But in such a case, eq. (4) would not be valid. In this case, one could always
perform a duality transformation to an equivalent weak coupling, weak curvature description and
return to the bound (7) with the same conclusions.

Also, the relationship between r and Minf in (1), and the Lyth bound (2), assume that inflation
was driven by a single, canonically normalised inflaton field slowly rolling down a flat potential.
One may wonder, therefore, if having more fields could help evade the bounds derived above.
Additional scalar fields provide an extra source of primordial scalar perturbations, but do not
affect the gravitational waves. It follows that (1) remains unchanged [30, 31]. Alternatively, we
may consider inflation driven by nontrivial kinetic effects rather than a flat potential (“k-inflation”
[32]). The non-canonical kinetic terms change the speed of sound for the scalar perturbations, but
again (1) remains unchanged [33]. On the other hand, the bounds may not apply to direct detection
of primordial gravitational waves, as these waves would correspond to scales vastly different to those
probed by the CMB.

Now in deriving the bounds we have on the other hand assumed (i) perturbative string theory
and its supergravity limit as a good description of the early Universe (ii) inflation within a four-
dimensional effective field theory, with a hierarchy of scales that controls the latter approximation.

3 Note that corrections to an EFT with cutoff Λ usually go as M2/Λ2.
4 See [23] for an earlier discussion of how the 4D EFT for inflation gives bounds relating r, gs annd V6.
5 See [25] for a further discussion on the robustness of fiber inflation.
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dimensional effective field theory, with a hierarchy of scales that controls the latter approximation.

3 Note that corrections to an EFT with cutoff Λ usually go as M2/Λ2.
4 See [23] for an earlier discussion of how the 4D EFT for inflation gives bounds relating r, gs annd V6.
5 See [25] for a further discussion on the robustness of fiber inflation.

(ms = 1/
p
↵0)

(Ms = 2⇡/
p
↵0)

Considering for example:

gs . 0.1 , V6 & 1000 , Minf ⇠ 0.3mkk , mkk ⇠ 0.3ms

3

where gs is the string coupling, Ms = 1/ℓs is the string scale (with α′ = ℓ2s/(2π)
2) and V6 is the

possibly warped, string-frame volume of the six extra dimensions in string units. Then, using (1)
and (4), the tensor-to-scalar ratio can be written in terms of the hierarchies in (3):

r = 3.1× 108
(

Minf

mkk

)4(mkk

ms

)4 ( gs√
V6

)4

. (5)

Note that r is very sensitive to mild changes in gs, volumes/curvatures (including numerical 2π
factors) and mass hierarchies, due to the fourth powers in (5). Assuming V6l6s ∼ βL6 and asking for
mass-squared hierarchies3 and string coupling to be less than some small number, δ, this implies
V6 > β/((2π)6δ3) and a simple bound4 on r:

r < 3.1× 108
(2π)12

β2
δ14. (6)

For example, assuming a torus with β ∼ (2π)6, and asking conservatively that δ ! 0.1 (so Minf ∼
0.3mkk ∼ 0.3ms) gives:

r ! 3.1× 10−6 . (7)

Relaxing the couplings and mass hierarchies to δ ! 0.2 (so Minf ∼ 0.45mkk ∼ 0.45ms) allows:

r ! 0.05 . (8)

We see that any observable r from string theory will depend sensitively on explicit numerical factors
and, moreover, be right at the limits of validity of the 4D EFT.

Note that in explicit, controlled string constructions r tends to be small. For example, in axion
monodromy models, long warped throats within throats are used to prevent brane anti-brane
annihilation and suppress brane backreaction [19, 20]. The large internal volume then drives the
string scale down, and thus – via (3) and (1) – also Minf and r down. Similarly, fibre inflation is
realised using the LARGE volume scenario, where internal volumes are large order to keep moduli
stabilisation under control [21, 25]. Any claim of large r in string theory must examine carefully
whether numerical factors in explicit models allow the required hierarchy (3) to be achieved, and
check that corrections to the 4D EFT are sufficiently suppressed. For example, fiber inflation5

might achieve r ∼ 10−3 with V6 ∼ 125 and δ ∼ 0.2, plausibly at the limits of control.
Let us now comment on the robustness of the bounds obtained above. First, one could try to

evade the bounds by going to strong coupling gs > 1 or strong curvatures L/ℓs < 1, to drive ms,
mkk to higher values. But in such a case, eq. (4) would not be valid. In this case, one could always
perform a duality transformation to an equivalent weak coupling, weak curvature description and
return to the bound (7) with the same conclusions.

Also, the relationship between r and Minf in (1), and the Lyth bound (2), assume that inflation
was driven by a single, canonically normalised inflaton field slowly rolling down a flat potential.
One may wonder, therefore, if having more fields could help evade the bounds derived above.
Additional scalar fields provide an extra source of primordial scalar perturbations, but do not
affect the gravitational waves. It follows that (1) remains unchanged [30, 31]. Alternatively, we
may consider inflation driven by nontrivial kinetic effects rather than a flat potential (“k-inflation”
[32]). The non-canonical kinetic terms change the speed of sound for the scalar perturbations, but
again (1) remains unchanged [33]. On the other hand, the bounds may not apply to direct detection
of primordial gravitational waves, as these waves would correspond to scales vastly different to those
probed by the CMB.

Now in deriving the bounds we have on the other hand assumed (i) perturbative string theory
and its supergravity limit as a good description of the early Universe (ii) inflation within a four-
dimensional effective field theory, with a hierarchy of scales that controls the latter approximation.

3 Note that corrections to an EFT with cutoff Λ usually go as M2/Λ2.
4 See [23] for an earlier discussion of how the 4D EFT for inflation gives bounds relating r, gs annd V6.
5 See [25] for a further discussion on the robustness of fiber inflation.

gives

Relaxing this to:

gs . 0.2 , V6 & 125 , Minf ⇠ 0.45mkk , mkk ⇠ 0.45ms

3

where gs is the string coupling, Ms = 1/ℓs is the string scale (with α′ = ℓ2s/(2π)
2) and V6 is the

possibly warped, string-frame volume of the six extra dimensions in string units. Then, using (1)
and (4), the tensor-to-scalar ratio can be written in terms of the hierarchies in (3):

r = 3.1× 108
(

Minf

mkk

)4(mkk

ms

)4 ( gs√
V6

)4

. (5)

Note that r is very sensitive to mild changes in gs, volumes/curvatures (including numerical 2π
factors) and mass hierarchies, due to the fourth powers in (5). Assuming V6l6s ∼ βL6 and asking for
mass-squared hierarchies3 and string coupling to be less than some small number, δ, this implies
V6 > β/((2π)6δ3) and a simple bound4 on r:

r < 3.1× 108
(2π)12

β2
δ14. (6)

For example, assuming a torus with β ∼ (2π)6, and asking conservatively that δ ! 0.1 (so Minf ∼
0.3mkk ∼ 0.3ms) gives:

r ! 3.1× 10−6 . (7)

Relaxing the couplings and mass hierarchies to δ ! 0.2 (so Minf ∼ 0.45mkk ∼ 0.45ms) allows:

r ! 0.05 . (8)

We see that any observable r from string theory will depend sensitively on explicit numerical factors
and, moreover, be right at the limits of validity of the 4D EFT.

Note that in explicit, controlled string constructions r tends to be small. For example, in axion
monodromy models, long warped throats within throats are used to prevent brane anti-brane
annihilation and suppress brane backreaction [19, 20]. The large internal volume then drives the
string scale down, and thus – via (3) and (1) – also Minf and r down. Similarly, fibre inflation is
realised using the LARGE volume scenario, where internal volumes are large order to keep moduli
stabilisation under control [21, 25]. Any claim of large r in string theory must examine carefully
whether numerical factors in explicit models allow the required hierarchy (3) to be achieved, and
check that corrections to the 4D EFT are sufficiently suppressed. For example, fiber inflation5

might achieve r ∼ 10−3 with V6 ∼ 125 and δ ∼ 0.2, plausibly at the limits of control.
Let us now comment on the robustness of the bounds obtained above. First, one could try to

evade the bounds by going to strong coupling gs > 1 or strong curvatures L/ℓs < 1, to drive ms,
mkk to higher values. But in such a case, eq. (4) would not be valid. In this case, one could always
perform a duality transformation to an equivalent weak coupling, weak curvature description and
return to the bound (7) with the same conclusions.

Also, the relationship between r and Minf in (1), and the Lyth bound (2), assume that inflation
was driven by a single, canonically normalised inflaton field slowly rolling down a flat potential.
One may wonder, therefore, if having more fields could help evade the bounds derived above.
Additional scalar fields provide an extra source of primordial scalar perturbations, but do not
affect the gravitational waves. It follows that (1) remains unchanged [30, 31]. Alternatively, we
may consider inflation driven by nontrivial kinetic effects rather than a flat potential (“k-inflation”
[32]). The non-canonical kinetic terms change the speed of sound for the scalar perturbations, but
again (1) remains unchanged [33]. On the other hand, the bounds may not apply to direct detection
of primordial gravitational waves, as these waves would correspond to scales vastly different to those
probed by the CMB.

Now in deriving the bounds we have on the other hand assumed (i) perturbative string theory
and its supergravity limit as a good description of the early Universe (ii) inflation within a four-
dimensional effective field theory, with a hierarchy of scales that controls the latter approximation.

3 Note that corrections to an EFT with cutoff Λ usually go as M2/Λ2.
4 See [23] for an earlier discussion of how the 4D EFT for inflation gives bounds relating r, gs annd V6.
5 See [25] for a further discussion on the robustness of fiber inflation.

allows



  to drive                 up?

Can we evade this bound going to strong coupling 
and/or strong curvatures                            

gs > 1 , L/`s < 1

In this case,

Ms , Mkk

Ms = MPl
gsp
4⇡V6

But one could perform a duality transformation to an 
equivalent weak coupling weak curvature description 
and back to the same bound and conclusions

no longer valid.



Comments 

The relation                                          remains unchanged 
for multifield and non-standard kinetic field inflation

V 1/4
inf ⇡ 1.8⇥ 1016GeV

⇣ r

0.1

⌘1/4

[Sasaki, Stewart, ’95; Wands, ’07] 
[Garriga, Mukhanov, ’99]

The bound assumes  
   i) inflation in a 4D EFT 
   ii) perturbative string theory and its supergravity limit as   
       a good description of the early Universe. 

A positive observation of PGW with       
would make convincing string realisations of inflation 
challenging, but very exciting! 

r ⇠ 10�2 � 10�3



Comments 

The relation                                          remains unchanged 
for multifield and non-standard kinetic field inflation

V 1/4
inf ⇡ 1.8⇥ 1016GeV

⇣ r

0.1

⌘1/4

[Sasaki, Stewart, ’95; Wands, ’07] 
[Garriga, Mukhanov, ’99]

The bound assumes  
   i) inflation in a 4D EFT 
   ii) perturbative string theory and its supergravity limit as   
       a good description of the early Universe. 

A positive observation of PGW with       

Universe was at the limits of string perturbation theory  
and sugra limit and at the limits of validity of the 4D EFT?

would make convincing string realisations of inflation 
challenging, but very exciting! 

r ⇠ 10�2 � 10�3


