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e Over the years, several potential sources of stochastic GW background

have been proposed
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e GW from inflation 7 Guaranteed signal from vacuum metric

perturbations, amplified from inflationary expansion

QGWh2N3-1016( H )2
7 -1013 GeV

s> Proportional to inflationary expansion rate, a ~ ef!

s=ie Too small to be observed at LISA & AdvLIGO



Inflation and the CMB

COBE (1989-1993)  WMAP (2003-2012)  Planck (2009-2013) (ongoing)

e Simplest models of inflation predict

gaussian, adiabatic, super-horizon

perturbations, in perfect agreement

with observed Cosmic Microwave

Background (CMB) radiation
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e CMB and LSS strongly support the pardigm of inflation. However, they
only probe modes 10~* < k/Mpc™! <1071, CMB distortions < 10%.
This is 18 of the 60 e-folds of “observable inflation”, say 42 < N < 60.

Smaller scales largely unprobed

e GW interferometers are a window on much smaller scales. k = 2« f

gives N ~ 25 for LISA and N ~ 15 for AdvLIGO peak frequencies

e Unique opportunity from GW interferometers gives us strong motivation

for studying scenarios of inflation with greater GW production:
Bartolo et al C LISA Cosmology group, arXiv:1610.06481
op — primordial black holes — BH S. Clesse’s talk

Spectator fields with small speed of sound

EFT with broken spatial reparametrization G. Tasinato’s talk
This talk
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We focus on a specific scenario, with a natural class of models of inflation

and with a mechanism of production o« exp (gb)

-} GW signal naturally grows at interferometer scales, while small at CMB scales

Axion™® Inflation Freese, Frieman, Olinto '90; . ..

(review Pajer, MP '13)

e Shift symmetry ¢ — ¢ + C on couplings to other fields
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Slow roll inflation requires very flat potential V, and, generically,

hard to explain why V protected against quantum corrections.

With shift symmetry, AV oc Vaprre

* Not the QCD axion; reference values f ~ 10 GeV , m, ~ 1013 GeV



e Strong restriction on allowed couplings. Interesting effects from

1 Turner, Widrow '88
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Classical motion ¢(9 (¢) affects dispersion relations of + helicities
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Sourced scalar perturbations from inverse decay  garaby, MP '10

Barnaby, Namba, MP '11
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Sourced ¢ highly non-gaussian (equilateral); fnLequi = —4 +£43  Planck '15

Constrains axion decay constant f > O (1016 Gev)
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General issue: how to increase heoyrceqd More than dsourced

Barnaby et al 12; Mirababayi, Senatore, Silverstein, Zaldarriaga '14;

Ferreira, Sloth '14; Namba et al '15

Huge experimental activity to detect GW through CMB polarization

1/4
Vacuum GW signal < scale of inflation V14 =10 GeVv ( i )
0.01

How robust ? Can sourced GW change this 7

CMB-S4 Science Book 1610.02743

2.6.3 Distinguishing vacuum fluctuations from other particle physics sources of B modes



Blue spectra from ¢FF

SA ~e™ and € x 2. Inflaton speeds up during inflation

H

= naturally greater effects at later times = smaller scales
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e Larger GW production at interferometer scales

Cook, Sorbo '11

Barnaby, Pajer, MP '12

Domcke, Pieroni, Binétruy '16
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Characterization of the GW signal

Bartolo et al' 16
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Larger scalar perturbations ¢ at smaller scales

Meerburg, Pajer '12;
Linde, Mooij, Pajer '12

e As in the CMB case, the main obstacle in getting sourced visible GW

at LISA is to avoid simultaneous overproduction of (

e Uncertainty in scalar perturbations in large & regime. Beside r.h.s

additional effect from A [5 [cb—|—5gb”. Friction also on §¢ Anber, Sorbo '09
56—+ 3 {1 _ IS, B} H5¢——5¢+m 56 =—F-B
3H¢ f J

e Other terms may become relevant in the large £ regime (this problem

is absent for ¢ at CMB scales, and for GW)



e At CMB scales, overproduction of ¢ meant NG of ¢, and running of n,
Barnaby, MP '10; Meerburg, Pajer '12

e At small scales, it means too many primordial black holes (PBH)

Linde, Mooij, Pajer '12
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e In chaotic inflation, PBH bound (if computation of ¢ is accurate)

prevents GW from being observable Linde, Mooij, Pajer '13
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e In relating N ~ 10 with N ~ 25, a given V (¢) must be assumed.

Do PBH bounds at the LISA scales prevent GW to be seen at LISA 7
Garcia-Bellido, MP, Unal '16

e Due to «x e‘fb, significant differences from a minor change of V
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Same conclusion for localized productionin —L DV (¢)+V (a)-i—%FF
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e A bump at N ~ 40 can give PBH, which are seeds of super massive BH,

whose collisions can be probed at LISA. More details in Clesse’s talk



Assume we see this. Can we distinguish it from

astrophysical signal ?

Chiral GW Q@ interferometers
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Conclusions

e CMB+LSS probe only a small portion of inflation. GW interferometers

offer a potential new window. Guaranteed vacuum signal is too small.

Still, we can probe several inflationary mechanisms

e Among them, sourced GW in axion inflation is particularly interesting,

since it naturally grows at interferometer scales

e As for CMB studies, fight between tensor and scalar production. Limits

on scalars from PBH have theoretical uncertainty and are model-dependent

e Distinctive signatures: chirality and NG



