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The Planck mission just released their "baby picture" of the universe, at an unprecedented resolution.  I 
saw a similar image in a low resolution and wanted to make a wallpaper-worthy one.  So here it is!

17 Points 26,729 Views
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Early Universe baby photos, 1989 through present (OC)
by jaedalus Mar 25 2013
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FIG. 7. Constraints in the r vs. ns plane when using Planck
plus additional data, and when also adding BICEP2/Keck
data through the end of the 2014 season including new 95 GHz
maps—the constraint on r tightens from r0.05 < 0.12 to
r0.05 < 0.07. This figure is adapted from Fig. 21 of Ref. [2]—
see there for further details.
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GW at CMB scales

• With latest Keck Array : r < 0.07

Planck + BICEP + Keck Array ’15

• Strong experimental program, from

ground, balloon, and (proposed) satellite

L. Page, Ferrara, Dec. 2014

• Multi-frequency is key, to eliminate dust

1610.02743

Contents

1 Exhortations 1

1.1 Brief History and Current Status of CMB measurements . . . . . . . . . . . . . . . . . . . . 1

1.2 CMB-S4 Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Raw sensitivity considerations and detector count . . . . . . . . . . . . . . . . . . . 4

1.2.2 Degree angular scale (low `) sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Subdegree angular scale (high `) sensitivity . . . . . . . . . . . . . . . . . . . . . . 5

1.3 A strawman instrument configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 The Road from Stage 3 to Stage 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Inflation 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Basics of cosmological inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Inflation basics I: A heuristic picture . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Inflation basics II: Quantifying the predictions . . . . . . . . . . . . . . . . . . . . 14

2.3 Sensitivity forecasts for r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Implications of a detection of primordial gravitational waves . . . . . . . . . . . . . . . . . . 21

2.4.1 The energy scale of inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Planckian field ranges and symmetries . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Implications of an improved upper limit on r . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Tensor-mode science beyond r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6.1 The shape of the tensor power spectrum . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6.2 Probing matter and gravitational interactions at the inflationary scale . . . . . . . 30

2.6.3 Distinguishing vacuum fluctuations from other particle physics sources of B modes 31

2.6.4 Constraining alternatives to inflation . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6.5 Constraints on the graviton mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7 Improved constraints on primordial density perturbations . . . . . . . . . . . . . . . . . . . 34

At any moment, only �A with � ⇠ H�1 present

Correlation between �� of comparable size

modes of comparable wavelength

Nearly equilateral NG

⇠ = O(1) for f/↵ = O
�
1016 GeV

�

More production
⇣
↵
f
F F̃

⌘

�A ⇠ e⇡⇠ so large variation in a

small window of ⇠ = O(1)

More production ! smaller r

(sourced GW ⌧ sourced ��)

Gauge field also produces GW, �A+ �A ! h

More production
�
↵
f
F F̃

�

More production ! smaller r

(sourced GW ⌧ sourced ��)

General issue: how to increase hsourced more than �sourced

Gauge field also produces GW, �A+ �A ! h

More production
�
↵
f
F F̃

�

However, more production ! smaller r1/2 =
hvacuum + hsourced

⇣vacuum + ⇣sourced

(sourced GW ⌧ sourced ��)

General issue: how to increase hsourced more than �sourced ?

Huge experimental activity to detect GW through CMB polarization

Vacuum GW signal $ scale of inflation

r < 0.07 with Planck + Keck Array

V 1/4 = 1016 GeV
⇣

r

0.01

⌘1/4

, r ⌘
PGW

P⇣

How robust ? Can sourced GW change this ?

1610.02743



Blue spectra from �FF̃
Blue spectra from �FF̃

�A ⇠ e⇡⇠ and ⇠ / �̇
H
. Inflaton speeds up during inflation

) other interesting e↵ects / signatures

Blue spectra from �FF̃

�A ⇠ e⇡⇠ and ⇠ / �̇
H
. Inflaton speeds up during inflation

) naturally greater e↵ects at later times ⌘ smaller scales

Blue spectra from �FF̃

�A ⇠ e⇡⇠ and ⇠ / �̇
H
. Inflaton speeds up during inflation

) naturally greater e↵ects at later times ⌘ smaller scales

• Backreaction on background �(0)

Blue spectra from �FF̃

�A ⇠ e⇡⇠ and ⇠ / �̇
H
. Inflaton speeds up during inflation

) naturally greater e↵ects at later times ⌘ smaller scales

• Backreaction on background �(0)

�̈(0) + 3H�̇(0) +
dV

d�
=

↵

f

⌦
~E · ~B

↵

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

-60 -50 -40 -30 -20 -10  0

| 
!
’ 
| 
/ 
M

p

-N

"in = 2.5

" = 0

• Observable NG for f/↵ <⇠ 1016 GeV , natural in axion inflation !

(5 orders of magnitude stronger bound than aQCD�� coupling)

• In principle, �A �A ! h of a given chirality

However, unobservable due to NG limits

• �A ⇠ e⇡⇠ and ⇠ / �̇. Inflaton speeds up during inflation. Possible

GW signal at interferometer scales (where weaker limits from ⇣)

Cook, Sorbo’11

• Actually, for interesting ⇠

strong backreaction of �A

at the end of inflation

Barnaby, Pajer, MP ’12
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FIG. 5: �GW h2 as function of the frequency f , for N = 60 e-foldings of observable inflation, a linear slow roll inflaton potential,
and �CMB = 0, 2.33, 2.66 (the value of � when the large scale CMB modes left the horizon). For reference we also show the
expected sensitivity of LISA, Advanced LIGO/VIRGO and Einstein Telescope (at their most sensitive frequency).
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IV. GRAVITATIONAL WAVES AT INTERFEROMETERS

In Section III we discussed the observable cosmological fluctuations on CMB/LSS scales. Such scales left the horizon
roughly 55 to 60 e-foldings before the end of inflation, during the phase where backreaction e�ects are negligible. In
this section, we instead study scalar and tensor fluctuations on much smaller scales. These modes left the horizon
closer to the end of inflation, when backreaction e�ects start to play an important role in determining the evolution
of the homogeneous background, ⇤(t) and H(t). Our main results are summarized in figure 6, where we show that
Advanced LIGO/VIRGO could detect a stochastic background of gravitational waves from inflation for ⇥CMB as small
as 2.33 (equivalent to f/(Mp�) � 0.021) in the case of a linear inflaton potential, and as small as 2.23 (equivalent to
f/(Mp�) � 0.031) in the case of a quadratic potential.
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• Larger GW production at interferometer scales
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Characterization of the GW signal

Name A5M5 A5M2 A2M5 A2M2 A1M5 A1M2
Arm length [km] 5M 5M 2M 2M 1M 1M
Duration [years] 5 2 5 2 5 2

Table 1: The six representative LISA configurations chosen for the analysis (number of links fixed to
six and noise level to the LISA Pathfinder one N2).

2 LISA sensitivity to a stochastic background

In 2013 the European Space Agency (ESA) has approved a GW observer in space as the
L3 mission. The main candidate for this mission is a space-borne interferometer based on
the long-standing, ESA-NASA joint project LISA (Laser Interferometer Space Antenna).
The goal of the LISA mission is to detect GWs in the frequency range (10�5 � 0.1) Hz
with high sensitivity (see e.g. Ref. [60] and references therein). This frequency band is
unexplored so far and very rich with both astrophysical and cosmological sources: the
main target is the GW signal from (massive black hole binaries) MBHB (masses in the
range 104 � 107M�) with high signal to noise ratio (SNR) and up to high redshift (see
e.g. Ref. [61] and references therein). However, low-mass black hole binaries as those
detected by LIGO in the range of few tens of solar masses will also be visible far from
merger [62, 63], together with galactic binaries [64], extreme mass ratio inspirals (EMRIs)
[65], and possibly a stochastic background from the early Universe [39].

In 2015, in preparation for the L3 mission, ESA appointed the “Gravitational Ob-
servatory Advisory Team” (GOAT) to provide advice on the science return of a range
of possible configurations for the eLISA (evolved LISA) detector. Several analyses were
then conducted on the scientific performance of different (e)LISA designs to specify the
science case: the present work is part of this series of papers. The first paper of this
series dealt with the GW signal from massive black hole binaries [61], the second paper
with the stochastic background from first order phase transitions occurring in the early
Universe [39], the third one with the use of massive black hole binaries as standard sirens
to probe the expansion of the universe [66] (a paper on the GW signal from EMRIs is in
preparation, and other studies dealing with the scientific performances of (e)LISA have
also been completed outside the series, as for example [62, 63]). Here, we address specif-
ically the potential of several LISA configurations to detect a stochastic background of
GW coming from inflation.

The variable characteristics of the (e)LISA configuration analysed in the aforemen-
tioned papers were the low-frequency noise level, the number of laser links (4 or 6), the
length of the interferometer arm (1, 2 or 5 million km), and the duration of the mission
(2 or 5 years). Since then, a major achievement has been reached: the LISA Pathfinder
satellite has flown and demonstrated that the expected noise in (e)LISA is almost one
hundred times better than the original requirement for the instrument [67]. The noise
that we adopt in this analysis is therefore the so-called N2 noise level [61]: this has been
tested by the pathfinder at frequencies f > 1 mHz, but the forecast is that it will be finally
achieved over the whole frequency spectrum. Moreover, the outcome of the GOAT study
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