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of the physical field, namely the refractive index in this case. Quite a large number of

articles following these references have, since then, been published in this rapidly evolving

subject in optics; see, e.g., [?] for an up-to-date overview. At this stage, it should be

emphasized that the SHEL, originally studied from a theoretical perspective, has lately

been observed experimentally using techniques of Weak Quantum Measurement [?, ?]

that are well adapted to wavelengths in the nanometer range. Hence the subject rests on

strong theoretical and also experimental bases.
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Figure 1: The Fedorov-Imbert e↵ect for reflection: A plane glass surface (repre-
sented by the rectangle) reflects an incoming, circularly polarized light beam. The
dashed lines indicate the orthogonal projections of incoming and reflected light
beams onto the glass surface. The dotted line (between the blobs) is the o↵set
between the reflected beam and a hypothetical reflected beam of spinless photons
(not shown in the figure). The o↵set is of the order of the wavelength of the light
beam.

It is noteworthy that the SHEL was shown to admit, rather unexpectedly, a full-

fledged description [?, ?] in terms of symplectic geometry based on the generic coadjoint

orbits of the Euclidean group E(3) with “built-in” Berry connection. This formalism was

then used to derive the equations of motion of photons in arbitrary inhomogeneous [?],

anisotropic [?] optical media, as well as polarized classical light rays in inhomogeneous

media [?]. The crux of the theory was the occurrence, via plain gravitational minimal

coupling, of a spin-curvature coupling term responsible for an anomalous velocity. It is

this specific geometrical standpoint, conveniently adapted to general relativity (GR), that

we will espouse in the present work.

With the advantage of our previous experience with SHEL, our purpose will therefore

be two-fold. We will first set up a purely geometric (and classical) formalism to describe

the motion of spinning massless particles in GR. They are governed by highly non-linear

ordinary di↵erential equations presented in Section ?? and specialized to the setting of

2

Figure: The Fedorov (1955) Imbert (1972) effect for reflection: A plane
glass surface reflects an incoming, circularly polarized light beam. The
dashed lines indicate the orthogonal projections of incoming and
reflected light beams onto the glass surface. The dotted line (between
the blobs) is the offset between incoming and reflected beams. It is of the
order of the wavelength of the light beam.
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Let X(τ) be the trajectory of a particle with spin in spacetime with
4-velocity Ẋ = (Ẋµ),
4-momentum P = (Pµ),
and the antisymmetric spin tensor S = (Sµν).

Their evolution is governed by the Mathisson-Papapetrou-Dixon
equations:

Ṗµ = −
1
2

R µ
αβρ SαβẊρ,

Ṡµν = PµẊν − PνẊµ,

where R = (R µ
αβρ ) is the Riemann tensor of the metric g, and here

(!) the overdot means covariant derivative along the wordline.
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We have to add an equation of state:

SP = 0,

which implies P2 = PµPµ = const & Tr(S2) = −SµνSµν = const.
For photons we set

P2 = 0 & −
1
2

Tr(S2) = s2 ,

where the “scalar spin” is

s = ±~.

Then the resulting equations of motion read [Souriau-Saturnini’76]

Ẋ = P +
2

R(S)(S)
S · R(S) · P ,

Ṗ = −s

√
− det(R(S))

R(S)(S)
P ,

Ṡ = P ∧ Ẋ ,

where R(S)(S) := RµνρσSµνSρσ must not vanish!
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Photons in flat Robertson-Walker backgrounds

Express the metric in Euclidean coordinates x and cosmic time t :

g = −a(t)2 ‖dx‖2 + dt2

with scale factor a > 0, that we also suppose increasing, a′ > 0.

• The (future pointing) 4-momentum of the photon is decomposed
as

P =


1
a

p

‖p‖

 , p ∈ R3 \ {0},

• and accordingly, the spin tensor as

S ·· =


j(s) −

(s × p)

a‖p‖

−
a (s × p)T

‖p‖
0

 , s ∈ R3, j(s)· := s × · .
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Equations of motion, 3 + 1 decomposition

Define the deceleration parameter q := −a a′′(t)/a′(t)2, then:

dx
dt

=
1
a

[
− q

p
‖p‖

+ (1 + q)
s
s

]
,

dp
dt

= −
a′

a

[
−q p + ‖p‖ (1 + q)

s
s

]
,

ds
dt

= (1 + q)
s
s
× p −

a′

a
s +

a′

a

[
‖s‖2

s
(1 + q) − s q

]
p
‖p‖

.



Conservation laws: Noetherian quantities

From invariance under translations and rotations we get:

P = −ap + a′s ×
p
‖p‖

= const,

L = x × P+ s = const.

From the conformal Killing vector a(t) ∂/∂t we get:

E = a ‖p‖ = const.

These 7 constants of motion imply 2 more, “the scalar spin” and
“the transverse spin”:

s =
s · p
‖p‖

= const, S = a′ ‖s⊥‖ = const,

with s⊥ := s − s p/‖p‖.
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Numerical integration in flat ΛCDM

a(t) = a0

 cosh[
√

3Λ t ] − 1

cosh[
√

3Λ t0] − 1

1/3

Our strategy:
I Express spin s(t) and momentum p(t) in terms of conserved

quantities P, L, E, s and S; plug those into the equation for
the velocity dx/dt .

I We remain with 3 equations in 3 unknowns x(t):

dx
dt

= A(t) x + B(t).

I Integrate the latter using the Runge-Kutta algorithm with initial
conditions at emission time te :

xe = 0, pe =

 ‖pe‖

0
0

 , se =

 s
s⊥e
0

 .



Explicit expression for the velocity

Let us define

F(t) :=
q(t)/a(t)

E

[
1 +

s2

E2
a′(t)2 +

S2

E2

] .
Then the velocity equation reads:

dx
dt

=

{
F

[
−

a′

E
j(P)2 +

a′2

E2
(L · P) j(P)

]
+

1
a s

(1 + q) j(P)

}
x

+F
[
P+

a′

E
L × P+

a′2

E2
(L · P)L

]
+

1
a s

(1 + q)L .



• Special solutions: straight lines

s⊥e = 0 ⇒ x̃(t) =
pe

‖pe‖

∫ t

te

dτ
a(τ)

, p(t) =
ae

a(t)
pe , s(t) = s

pe

‖pe‖

These are the null geodesics (spin is “enslaved”).

• “Precessing” solutions:
Realistic initial conditions s⊥e = ~ (Quantum Mechanics) and e.g.
λLyα = 8.72 · 10−34 am,1 z = 2.4 . Then with Λ = 3 · 0.685/am2 and
t0 = 0.951 as the time of emission is te = 0.188 as.

For a more modest λ = 1.2 · 10−2 am, Runge & Kutta readily tell us:
? R(S)(S) > 0.
? The longitudinal offset of the trajectory from its

companion null geodesic is

|x1(t) − x̃1(t)| = O(ε2) , ε := s⊥e /E .

1Astro-units such that: c = 1 am/as, ~ = 1 ag am2/as and H0 = 1/as.
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Figure: The trajectory of the the photon, x(t), in comoving coordinates for
s⊥e = ~ is the helix. The dashed line is the null geodesic (s⊥e = 0). The
transverse spin, s⊥e , is indicated by the short arrow at the left.
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Figure: The three spin components s1(t), s2(t), and s3(t).



Perturbative solutions

We return to generic, flat RW spacetimes and linearize the
equations of motion w.r.t. the small dimensionless parameters

η :=
s
E

& ε :=
s⊥e
E
.

Put (x1, x2, x3) = (x̃1, εy2, εy3) + O(ε2) and linearize dx/dt :

dx1

dt
∼

1
a

+ a′e
1 + q

a
y2 ε

2

η
,

dy2

dt
∼

1 + q
a

[
1 − a′ex1 + y3

] 1
η
,

dy3

dt
∼ −

1 + q
a

y2 1
η
.
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Birefringence

• Recall that (x1(t), 0, 0) is (up to second order terms) the null
geodesic; with the change of time coordinate

t 7→ θ(t) ∼
1
|η|

[
x1(t) +

1
a′(t)

−
1
a′e

]
the transverse trajectory is now governed by the equations

dy2

dθ
∼ sign(η) (y3 + 1 − a′ex1),

dy3

dθ
∼ −sign(η) y2.

•With the previous initial conditions and setting ε = |η|, we obtain:

y2(t) ∼ sign(η) sin θ(t) & y3(t) ∼ cos θ(t) − 1 + a′ex1(t).

The trajectory is therefore a Left/Right helix depending on the
helicity sign(η) = sign(s) of the photon, i.e. birefringence of light.
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Period, center and radius of the helix
• The instantaneous period of the helix in cosmic time is
Thelix(t) ∼ 2π dt/dθ,

Thelix(t) ∼
a(t)
ae

Te

1 + q(t)
.

• Its center at time t is located in comoving coordinates at

xcenter(t) ∼


x1(t)

0
−|η|

(
1 − a′ex1(t)

)
 .

• Its comoving radius is time-independent and equal to |η|. Its true
radius is

Rhelix(t) ∼
a(t)
ae

c Te

2π
=

z + 1
2π

λe ,

λe being the wavelength at emission.
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Open questions

• The gravitational field of an expanding universe produces
birefringence of light.

• This birefringence carries information on the acceleration of the
universe.

• Can this birefringence of wild photons be measured?

• Does the gravitational field of a gravitational wave also produce
birefringence of light?

• If yes, what information is carried by this birefringence?

• If yes, can this birefringence of hatchery photons be measured?


