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Figure: The Fedorov (1955) Imbert (1972) effect for reflection: A plane
glass surface reflects an incoming, circularly polarized light beam. The
dashed lines indicate the orthogonal projections of incoming and
reflected light beams onto the glass surface. The dotted line (between
the blobs) is the offset between incoming and reflected beams. It is of the
order of the wavelength of the light beam.
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Let X(7) be the trajectory of a particle with spin in spacetime with
4-velocity X = (X*),

4-momentum P = (P*),

and the antisymmetric spin tensor S = (S*”).
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Their evolution is governed by the Mathisson-Papapetrou-Dixon

equations:
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where R = (Rwﬁp“) is the Riemann tensor of the metric g, and here
() the overdot means covariant derivative along the wordline.



We have to add an equation of state:
SP =0,
which implies P2 = P,P* = const & Tr(S?) = -S,,,S*” = const.

For photons we set
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P2=0 & - ETr(SZ) =52,
where the “scalar spin” is

S = +h.



We have to add an equation of state:
SP =0,

which implies P2 = P,P* = const & Tr(S?) = -S,,,S*” = const.
For photons we set

1
PP=0 & - ETr(SZ) =5,
where the “scalar spin” is
s = =+h.

Then the resulting equations of motion read [Souriau-Saturnini’76]
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S = PAX,

where R(S)(S) := Ruypoe-S*”SP must not vanish!



Photons in flat Robertson-Walker backgrounds
Express the metric in Euclidean coordinates x and cosmic time t:
g = —a(t)?|ldx|* + dt?

with scale factor a > 0, that we also suppose increasing, a’ > 0.



Photons in flat Robertson-Walker backgrounds
Express the metric in Euclidean coordinates x and cosmic time t:
g = —a(t)?|ldx|* + dt?

with scale factor a > 0, that we also suppose increasing, a’ > 0.
e The (future pointing) 4-momentum of the photon is decomposed
as
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e and accordingly, the spin tensor as
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Equations of motion, 3 + 1 decomposition

Define the deceleration parameter q := —a a”’(t)/a’(t)?, then:
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Conservation laws: Noetherian quantities
From invariance under translations and rotations we get:

P = -ap+a'sx P _ const,
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L = XXP+ s=const.
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Conservation laws: Noetherian quantities

From invariance under translations and rotations we get:

P = -—ap+a'sx P _ const,
lIpll
L = xXX%PP+ s =const.

From the conformal Killing vector a(t) /0t we get:
& = a|lp|| = const.

These 7 constants of motion imply 2 more, “the scalar spin” and
“the transverse spin”:
s .
s=>P
lIpll

= const, S = a’||s*|| = const,

with s* :=s — sp/|Ipll.



Numerical integration in flat ACDM

__ (cosh[V3AL] - 1 13
all) = ao[cosh[\/S_/\to] —1]

Our strategy:

» Express spin s(t) and momentum p(t) in terms of conserved
quantities P, L, &, s and S; plug those into the equation for
the velocity dx/dt.

» We remain with 3 equations in 3 unknowns x(t):

dx
P A(t)x + B(t).

» Integrate the latter using the Runge-Kutta algorithm with initial
conditions at emission time t,:
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Explicit expression for the velocity

Let us define

A= — 20
8[1 + ga’(t)z + g]

Then the velocity equation reads:
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e Special solutions: straight lines

“dr de Pe
t) = —Pe, S(t)=s
P = 2P S =5

~ Pe
ss=0 = X(t)= —_,
° O = ipai )., a0

These are the null geodesics (spin is “enslaved”).

' Astro-units such that: ¢ = 1am/as, i = 1 agam?/as and Hy = 1/as.



e Special solutions: straight lines

ar P(1) = 5P (1) = 5 oE¢

= Pe
st=0 = Xx(t
° ® lIpell

~ Ipell Ji, a(r)’

These are the null geodesics (spin is “enslaved”).

e “Precessing” solutions:

Realistic initial conditions s; = 7 (Quantum Mechanics) and e.g.
Ay, =8.72-107%*am,' z=2.4. Then with A = 3 - 0.685/am? and
fo = 0.951 as the time of emission is t = 0.188 as.

For a more modest 1 = 1.2- 1072 am, Runge & Kutta readily tell us:
* R(S)(S) > 0.
*  The longitudinal offset of the trajectory from its
companion null geodesic is

IX'(t) - X'(t)l = O(€?), €:=s2/E.

' Astro-units such that: ¢ = 1am/as, i = 1 agam?/as and Hy = 1/as.



Figure: The trajectory of the the photon, x(t), in comoving coordinates for
sy = his the helix. The dashed line is the null geodesic (s; = 0). The
transverse spin, sz, is indicated by the short arrow at the left.






Perturbative solutions

We return to generic, flat RW spacetimes and linearize the
equations of motion w.r.t. the small dimensionless parameters
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Perturbative solutions

We return to generic, flat RW spacetimes and linearize the
equations of motion w.r.t. the small dimensionless parameters

77::2 & €= —.

Put (x', x2,x3) = (X', ey?, ey®) + O(€?) and linearize dx/at:
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Birefringence

e Recall that (x'(t),0,0) is (up to second order terms) the null
geodesic; with the change of time coordinate

1 1

t 6(t) ~ O

E x'(t) +

the transverse trajectory is now governed by the equations

dy? dy®
o~ sien(n) (P +1-apx). =5~ sign() y*



Birefringence

e Recall that (x'(t),0,0) is (up to second order terms) the null
geodesic; with the change of time coordinate

1 1
a(t) ag

teo(t) ~ — |x'(t) +

Il

the transverse trajectory is now governed by the equations

dy? dy®
o~ sien(n) (P +1-apx). =5~ sign() y*

o With the previous initial conditions and setting e = ||, we obtain:
y2(t) ~ sign(n)sind(t) &  y3(t) ~cosd(t) — 1+ aLx'(t).

The trajectory is therefore a Left/Right helix depending on the
helicity sign(n) = sign(s) of the photon, i.e. birefringence of light.



Period, center and radius of the helix

¢ The instantaneous period of the helix in cosmic time is
Thelix (1) ~ 27 dt/d6,
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Period, center and radius of the helix

¢ The instantaneous period of the helix in cosmic time is
Thelix (1) ~ 27 dt/d6,

a(t) T
ae 1+q(t)

Thetix () ~

e |ts center at time t is located in comoving coordinates at

x'(1)
xcenter(t) ~ 0
Il (1 - agx' (1))

e |ts comoving radius is time-independent and equal to ||. Its true

radius is
a(t)cTe  z41

a. 27  2n

Rhneiix (t) ~ Aes

Ae being the wavelength at emission.



Open questions

¢ The gravitational field of an expanding universe produces
birefringence of light.

¢ This birefringence carries information on the acceleration of the
universe.

e Can this birefringence of wild photons be measured?

¢ Does the gravitational field of a gravitational wave also produce
birefringence of light?

e If yes, what information is carried by this birefringence?

o If yes, can this birefringence of hatchery photons be measured?



