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Introduction

Detecting a stochastic background of gravitational waves
with non-standard polarizations

The �rst direct detection of a gravitational wave (GW) signal, GW150914, has started the
new era of gravitational wave Astronomy.
Many kilometer-size Advanced laser interferometric GW detectors are currently operating
all around the globe and several upgrades have been planned for the next decade, ∼ 2021.

One of the most interesting targets for their search is a

stochastic background of gravitational waves (SGWB)

similar to the cosmic electromagnetic background radiation (CMB), generated by the inco-
herent superposition of a large number of independent and unresolved GW sources since the
Big Bang (and before)!
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Introduction

Production mechanisms of an SGWB

Motivations and possible targets

Why looking for an SGWB signal?

Basic idea: gravitational interaction is so weak that even the most energetic and catas-
trophic astrophysical processes may produce, individually, GWs that are too small to be
detected. [Collins, 2010]

Fortunately, we can expect that there is a HUGE number of such sources in the Universe
surrounding us.

What may have produced it?
Astrophysical sources: [Regimbau, 2011]

bursts: supernova collapses and captures by supermassive black holes;

coalescences of compact objects binary systems;

periodic sources: turbulence and instabilities in rapidly rotating neutron stars.
Cosmological processes:

In�ation: GWs produtction by the ampli�cation of vacuum �uctuations; [Turner, 1997]

Axion in�ation: backreaction on the in�aton extends in�ation; [Barnaby et al., 2012]

Cosmic strings oscillations and decays; [Siemens et al., 2007]

�Sti� (w > 1/3) energy� , between in�ation and RD era; [Boyle and Buonanno, 2008]

Pre-Big Bang models inspired by string cosmology; [Mandic and Buonanno, 2006]

??? ⇐ other unknown production mechanisms.
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Introduction

General features

General features of the SGWB

Astrophysical: [Regimbau and Mandic, 2008]

possible contributions from the beginning of the stellar activity (z∼ 10), though most sources are
expected to be located at red-shift z . 5;

at lower z, sources are likely to be anisotropically distributed towards the Virgo Cluster or the Great
Attractor.

Cosmological, �the Grail of GW astronomy�: [Maggiore, 2000]

characteristic decoupling temperature of gravitons from the primordial plasma:(
Γ

H

)
gravitons

∼ G2
N T5

T2/MPl

∼
(

T
MPl

)3

, ⇒ Tdec ∼MPl ' 2.24×1018 GeV

assuming a causal source of GWs operating at sub-Hubble scales: f∗ = ε−1H∗:

temperature of production T∗:

T∗ ' 6.1×107
ε

(
f0

1 Hz

)(
100

gS(T∗)

)1/6

GeV

epoch of production t∗:

t∗ ' 6.6×10−21
ε
−2
(

1 Hz
f0

)2( 100
gS(T∗)

)1/6

sec

where gS(T) is a measure of the e�ective number of d.o.f. at temperature T, as far as the entropy
S is concerned: gS(T0)' 3.91, gS(& 300 GeV)' 106.75. ε ∼ 10−3÷1 [Binetruy et al., 2012].
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Introduction

General features

Importance of studying the SGWB

Any SGWB takes trace of the process(es) that produced it. Studying it will shed light on:

very early Universe cosmology (t ∼ 10−27 sec) and the �fairly close� (z . 5) structure of the
Universe, never accessible with any other means (e.g. EM radiation and neutrinos);

⇓
correspondingly high-energy physics (∼ 1010 GeV), beyond the Standard Model of particle
physics: strings, supersymmetries, higher dimensions, quantum gravity. . .;

⇓
Alternative Theories of Gravity, di�erent from Einstein's General Relativity (GR).

There are several reasons to introduce (and test) these theories: [Capoziello, 2010]

testing GR itself, considering these theories as alternatives in an hypothesis test;

they �emerge� in e�ective actions describing the low energy limit of models for the
uni�cation of fundamental interactions (like superstrings, supregravity, GUTs);

they can correct some issues with the standard FRW cosmological model, in
particular at extreme regimes: dark matter and dark energy, Big Bang singularity, etc.;

a step toward the solution for the gravity quantization problem.

Therefore, a coherent way to test the SGWB should necessarily pass through
alternative theories of gravity, and, conversely, the study of an SGWB can
be a very valuable testing ground for these theories, as well as for GR.
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Introduction

Alternative theories of gravity

Gravitational Waves in Alternative Theories of Gravity

An enormous variety of proposals for Alternative theories of Gravity can be found in literature
(see for example [Capozziello and De Laurentis; Clifton et al.] or [Will]). They can di�er mainly through:

the gravitational action and the equations of motion, (f (R) theories)

the presence of additional dynamical gravitational �elds, (Brans-Dicke, vector-tensor theories)

higher spatial dimensions, (Kaluza-Klein, DGP braneworld)

prior geometries, (bimetric theories, strati�ed theories)

etc...

Despite their di�erences, ALL of the �viable� theories have in common that

they admit wave-like solutions (GWs)

to be consistent with GW150914 and GW151226 (and as a possible consequence of being based on

second order di�erential equations and to incorporate the request of local Lorentz invariance [Will]).

GWs predicted by di�erent theories could di�er through:

the propagation speed (e.g. for massive gravitons or extra-dimensions); ← current

GW150914 model dependent bound: mg < 10−22 eV, or λg > 1013 km [Abbott et al. 2016].

the waveform (depending on both the source and on the �eld equations of the theory);

the polarization modes ⇐ model independent test!
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Introduction

Additional polarization modes

Non-standard polarization modes in alternative theories

It can be shown that any generic theory of gravity, with additional �elds, degrees of freedom,
massive gravitons, or extra dimensions (once projected on our 3-space) can predict, at most,
six polarization modes of a GW.

We can classify them according to the relative displacement they produce on test masses
with respect to their propagation direction (E(2) classi�cation scheme [Eardley et al., 1973]):
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Plus mode

�

Cross mode

�

x mode y mode

Breathing mode

�

Longitudinal mode

ξ̈i =−c2Ri0j0ξ
j =

1
2 ∑

A=+,×,x
y,b,`

ḧijξ
j =

1
2 ∑

A=+,×,x
y,b,`

ḧAeA
ijξ

j.

Theoretical Model e+ij e×ij eb
ij e`ij ex

ij ey
ij

Einstein General Relativity * *
Scalar-tensor (Brans-Dicke) theories * * * *
f (R) theories * * * * * *
Vector-tensor theories * * * * * *
GR in a noncompacti�ed 5D sp. * * * * * *

GR in a noncompacti�ed 6D sp. * * * * * *

5D Kaluza-Klein theory * * * * *

Randall-Sundrum braneworld * *

DGP braneworld (normal branch) * *

DGP braneworld (acceler. branch) * * * *

Bimetric (Rosen's, Rastall's) * * * * * *
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Detector characterization

The detector signal

The detector signal

A GW laser interferometric detector measures the phase
shift of the light after traveling into its two arms.
The resulting signal is a time series s(t) containing the
strain h(t), produced by GWs, and a noise component
n(t):

s(t) = h(t)+n(t), where h(t)≡ hij(t,x)Dij

where Dij = 1
2

[
uiuj − vivj

]
is the detector tensor, �xed by the

geometry of the detector.
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Detector characterization

Cross-correlation Analysis

Cross-correlation analysis

The strain signal h(t) is expected to be (in the most favorable case: designed Advanced
Ligo strain sensitivity [LIGO Scienti�c Collaboration et al., 2013] and LIGO S5 SGWB
sensitivity [Abbott et al., 2009]) 102 times smaller than the noise n(t).

Then, how can we extract information about the SGWB?

⇒ Cross-correlation analysis: [Michelson, 1987]

if the noises of two, or more, detectors far apart are uncorrelated, correlating
their outputs the noise contributions cancel and it remains only the signal:

This procedure allows to get rid of the dominant noise contribution and improve, by
several orders of magnitude (∼ 104, as for LIGO S5), the sensitivity that a single detector
may have to the SGWB.

For the validity of this approach it is important to:

check the assumptions for the absence of correlated noise (e.g. Schumann
resonances [Thrane et al., 2014]);

dispose of (possibly, more than one) detector pairs far apart (e.g. LIGO H1 and
H2 are not well suited).
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several orders of magnitude (∼ 104, as for LIGO S5), the sensitivity that a single detector
may have to the SGWB.

For the validity of this approach it is important to:

check the assumptions for the absence of correlated noise (e.g. Schumann
resonances [Thrane et al., 2014]);

dispose of (possibly, more than one) detector pairs far apart (e.g. LIGO H1 and
H2 are not well suited).
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Assumptions about the signal and the noise

Noise:

absence of correlations between the noises of di�erent detectors; ← to be checked!

stationary: the total data stream is broken into periods where the detector is assumed to be so;

Gaussian distributed: assuming the noise to be given by the superposition of a large number of
contribution, this is guaranteed by the Central Limit Theorem (CLT). ← to be checked!

and therefore it can be fully described by the value of its correlation:〈
ñ∗i (f )ñj(f ′)

〉
= δijδ (f − f ′)

1
2

Pi(f ), where i, j = 1, . . . ,N detectors

and Pi(f ) is the power spectrum density for the i-th detector.

SGWB signal:

stationary for the duration of GW experiments (∼ 107 sec) are expected to be several orders of
magnitude shorter than the typical SGWB time scales (i.e. cosmological time scales ∼ H−1);

Gaussian distributed: CLT for large number of pointlike astrophysical sources or causally
independent cosmological production horizons; [Allen, 1997]

isotropic: justi�ed (in �rst approximation) for the cosmological SGWB by analogy with the CMB.
Astrophysical sources at z & 0.1 are isotropic, while those at z . 10−2 are not. ← to be checked!

in literature they are usually considered only tensor modes of polarization (those of GR) and they
are also assumed to be unpolarized. In this presentation I will relax both of these assumptions, in
order to include the possibility for Alternative theories of gravity.
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SGWB signal cross-correlator

〈
h̃∗i (f )h̃j(f ′)

〉
= δ (f − f ′)

1
2 ∑

A
Γ

A
ij(f )SA

h (f ), where A =±2,±1,0

where it can be shown from invariance principles that the most general isotropic SGWB allows,
at most, 6 independent polarization components, but only 5 of them can be distinguished with
an orthogonal arms, interferometric detector. Some equivalent de�nitions:

S±2
h ≡

1√
2

(
S+h ± iS×h

)
≡ ST

h ±VT , S±1
h ≡

1√
2

(
Sx

h± iSy
h

)
≡ SV

h ±VV , SS
h = Sb

h +S`h,

where VT,V is the parity violation Stokes parameter (non-vanishing in those theories of gravity
that violate parity. [Crowder et al., 2013; Lue et al., 1999; Seto and Taruya, 2007]).
The two scalar polarization modes, b and `, are completely degenerate at the detector output.

In the previous equation:

ΓA
ij(f ) is the A-th component overlap reduction function (ORF) between the i-th and the j-th detector.

It takes into account the distance and di�erent orientation of the two detector and it measures
the corresponding loss of coherence between their signals:

Γ
A
ij(f )≡

∫
S2

d2Ω̂

4π
e2πi f Ω̂·(xi−xj)/cDab

i eA∗
ab
(
Ω̂
)

Dcd
j eA

cd
(
Ω̂
)
, a,b,c,d = 1,2,3.

SA
h (f ) is the A-th component of the SGWB power spectrum density, similar to Pi(f ) but several

orders of magnitude smaller (∼ 102 in the most favorable case, but probably much more...).
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γ
A
ij (f )≡ Γ

A
ij(f )/Γ

A
ijaligned and colocated

for the di�erent detector pairs Virgo - LIGO(L),

Virgo - LIGO(H) and LIGO(H) - LIGO(L). No-

tice how the di�erences of behavior between

the polarization modes are manifest at around

the characteristic frequency fc ≡ c/|∆x|, above of

which the ORFs rapidly decrease to 0.
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Standard cross-correlation analysis: a review

Currently there is no evidence for the presence of an SGWB signal in the recorded data sets.

Then: How can we claim a detection of an SGWB signal?

Assuming only standard GR, unpolarized tensor modes, the usual algorithm [Allen and Romano, 1999;

Flanagan, 1993] consists into construct the optimal cross-correlation statistic:

Y(s̃) =
∫∫

df df ′ s̃∗i (f ) s̃j(f ′) Q̃ij(f , f ′),

where the optimal �lter function Q̃ij(f , f ′) is found with a matching �lter procedure, maximizing the
SNR of Y(s̃). It results that:

Q̃ij(f , f ′) = δ (f − f ′)
Γ
(T)
ij (f )S(T)h (f )

Pi(f )Pj(f )
.

The SNR of this statistic is then compared with a �xed threshold (e.g. SNR > 5) [Maggiore, 2008] or
it is performed a Neyman-Pearson test (more details later) [Allen and Romano, 1999].

Issues with this approach:

It excludes the possibility for testing alternative theories of gravity, ignoring non-stan-
dard polarization modes;

Y(s̃) is NOT an actual statistic (that is, an observable function of the data s̃) for the
presence of the unknown function: Sh(f ). One solve this last point testing only
power-law models:

Sh(f ) = Sν f ν , with typical values of ν =−3,−1,0.
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Generalized detection algorithm
and the purposes of the present thesis work

We decided to improve the standard cross-correlation analysis algorithm in the following
ways:

including the possibility for non-standard polarizations, as it seems to be

adequate for studying an SGWB produced at very high energy-densities by some

theory of gravity di�erent from GR;

relaxing the description by means of power-law templates, because a

frequency-by-frequency study of its spectrum will be, after the �rst detection, the

key point in order to understand what may have produced the detected SGWB;

�nding the maximum likelihood estimators (MLEs) for the SGWB spectral density

components, SA
h (f ), for studying the polarization contributions to it and its

behavior frequency-by-frequency;

following form the beginning a mathematically oriented approach and making use

of some general theorems (Neyman-Pearson Lemma) that guarantee optimal

performances for our algorithm, according to certain statistical criteria. [Kay, 1998]

Known results from the literature have been recovered adding only later further assump-
tions and simpli�cations to this much general analysis algorithm.
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Generalized detection algorithm

Hypothesis test

How can we claim a detection of an SGWB signal?
We want to verify if the measured data set supports better the hypothesis H0 of absence of
an SGWB signal or that H1 of its presence:

H0, absence of an SGWB signal:〈
s̃∗i (f ) s̃j(f ′)

〉
= 0 for i 6= j,

H1, presence of an SGWB signal:〈
s̃∗i (f ) s̃j(f ′)

〉
=

1
2

δ (f − f ′)∑AΓ
A
ij(f )SA

h (f ) for i 6= j.

To do that we need an hypothesis test, that is, a decision rule that, given some measures,
select for us one of the two previous hypotheses.

Every rule of this kind will be imperfect for the possible occurrence of some error:

Type I, or false alarm error wrongly reject H0
Type II error, or false dismissal error wrongly reject H1

Neyman-Pearson criterion: Among the various possible tests, we chose the one that at
�xed false alarm probability α gives the smallest false dismissal probability β , or, conversely,
the highest detection probability γ ≡ 1−β .
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Neyman-Pearson test

How can we construct an optimal test statistic?

Neyman-Pearson Lemma: Given the statistic Y(s̃) constructed by means of the ratio of the
likelihood functions (Likelihood Ratio Test, LRT) of the alternative and the null hypotheses,
the test the chooses

Y(s̃)
H1
≷
H0

η , where P
(
Y(s̃)> η |H0

)
= α

for a �xed false alarm probability α is the one that maximizes the detection probability γ.
[Neyman, 1937]

Given the cross-correlations for the hypotheses H1 and H0, the resulting test statistic is:

Y(s̃) =
∫

df s̃∗i (f )
∑A ΓA

ij(f )SA
h (f )

Pi(f )Pj(f )
s̃j(f ),

which equals the standard test statistic obtained maximizing the SNR, but which includes
also non-standard polarizations.

The is not yet an actual test statistic because it contains the unknown functions SA
h (f ).

Generalized Likelihood Ratio Test (GLRT): Perform the standard Neyman-Pearson, LRT,

where to the unknown parameters are substituted their Maximum Likelihood Estimators.
Optimality, in the sense of the NP criterion, is guaranteed by the asymptotic properties of
MLEs.[Kay, 1998]
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likelihood functions (Likelihood Ratio Test, LRT) of the alternative and the null hypotheses,
the test the chooses

Y(s̃)
H1
≷
H0

η , where P
(
Y(s̃)> η |H0

)
= α

for a �xed false alarm probability α is the one that maximizes the detection probability γ.
[Neyman, 1937]

Given the cross-correlations for the hypotheses H1 and H0, the resulting test statistic is:

Y(s̃) =
∫

df s̃∗i (f )
∑A ΓA

ij(f )SA
h (f )

Pi(f )Pj(f )
s̃j(f ),

which equals the standard test statistic obtained maximizing the SNR, but which includes
also non-standard polarizations.

The is not yet an actual test statistic because it contains the unknown functions SA
h (f ).

Generalized Likelihood Ratio Test (GLRT): Perform the standard Neyman-Pearson, LRT,

where to the unknown parameters are substituted their Maximum Likelihood Estimators.
Optimality, in the sense of the NP criterion, is guaranteed by the asymptotic properties of
MLEs.[Kay, 1998]
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Parameter estimation
From the SGWB cross-correlation, we can �nd the unbiased estimators for the SGWB components,

ŜA
h (f ) minimizing the distance:∥∥∥Σij(f )− T

2 ∑A ΓA
ij(f ) ŜA

h (f )
∥∥∥2

, where Σij(f )≡
1
n

n

∑
I=1

s̃∗I,i(f ) s̃I,j(f ), Ttot = nT.

It can be shown that these estimators are also asymptotically MLEs.
An estimator of this kind can be constructed if the number of the available detector pairs

(N
2

)
is

greater than the number polarization we want to reconstruct P. In this case:

ŜA
h (f ) =

2
T ∑

B

[(
Γ

T
Γ
)−1
]AB

∑
i,j

Γ
B
ijΣij,

where the term
(
ΓT Γ

)−1
ΓT is the left pseudo-inverse of the ORF matrix ΓA

ij(f ), and it reduces to the

usual inverse when
(N

2

)
= P:

ŜA
h (f ) =

2
T ∑

i,j

(
Γ
−1)A

ijΣij.

This is the most interesting case as it describes the situation when we want to reconstruct 3 modes
of polarizations with the 3 currently operating kilometer-size interferometric detectors: LIGO H and
L and Virgo.

More often, we are in an under-determined situation:
(N

2

)
< P. We have to recur to a generalized,

power-law template approach:

Assuming: SA
h (f ) = SA

ν

(
f/f0
)ν
, ŜA

ν =
2
T ∑

B
MAB

∫
df
(

f/f0
)ν

Γ
A
ijΣij,

where MAB ≡
[∫

df
(

f/f0
)2ν

ΓA
ij(f )ΓB

ij(f )
]−1

is a normalization factor.
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Generalized test statistic
We can de�ne the generalized test statistic substituting the previous estimators into the
expression for Y(s̃) (as prescribed by the GLRT).

If
(N

2

)
> P:

YG ≡
1

(nT)2

n

∑
I,J

∑
i,j

(i6=j)

∑
k,l

(k 6=l)

∫
df

s̃∗I,i(f ) s̃I,j(f ) s̃∗J,k(f ) s̃J,l(f )

Pi(f )Pj(f )
∑
A,B

Γ
A
ij

((
Γ

T
Γ
)−1
)AB

Γ
B
kl︸ ︷︷ ︸

projector on the null

space of ΓA
ij

.

If
(N

2

)
6 P:

YG ≡
2

(nT)2

n

∑
I,J

∑
i,j

(i 6=j)

∫
df

s̃∗I,i(f ) s̃I,j(f ) s̃∗J,i(f ) s̃J,j(f )

Pi(f )Pj(f )
.

Power-law template reconstruction:

YG ≡
2

(nT)2 ∑
I,J

∑
A,B

MAB
∫∫

df df ′
s̃∗I,i(f ) s̃I,j(f ) s̃∗J,i(f

′) s̃J,j(f ′)

Pi(f )Pj(f )
Γ

A
ij(f )Γ

B
ij(f
′)

(
f f ′

f 2
0

)ν

.

Disposing of a set of data s̃, we can compute the corresponding value of the previous
generalized statistics and perform the GLRT hypothesis test comparing their values with the
threshold η obtained from the �xed false alarm probability α and the statistical properties
of YG (thought as a random variable itself).
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Data analysis on LIGO S5 data and projections

Analysis LIGO S5 data

Data analysis on LIGO S5 data
We tested the LIGO S5 data with our detection algorithm.

Currently NO DETECTION was possible with the LIGO S5 data. The Bayesian upper limit (based on
previous measures by LIGO S4 and S3) on the value of its energy density,

Ω
M
gw(f )≡

(
2π2

3H 2
0

)
f 3SM

h (f ), for every mode M = T,V,S

published in [Abbott et al., 2009] is:

Ω
T
0 < 6.9×10−6 at 95% con�dence level.

Our algorithm yielded that:

NO detection was possible with our frequentist approach based on the NP criterion, for
reasonable �xed values of the false alarm probability α (1, 5 or 10%). The minimum α

that can support a detection is 23%; ← too high!

we computed then the sensitivity level, that is, the maximum value of the SGWB that
LIGO missed to detect:

Ω
A
ν >

1√
Ttot

3H 2
0

2π2

(∫
df
(

f
f0

)2ν
(
ΓA

ij(f )
)2

f 6 Pi(f )Pj(f )

)−1/2

P1/4 (erfc−1(2α)−erfc−1(2γ)
)1/2

Assuming: α = 5%, γ = 95%,

Ttot = 107 sec, f0 = 100Hz
P = 5 polarizations

⇒
ΩT

0 ΩV
0 ΩS

0

7.93×10−5 2.43×10−5 2.45×10−5
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Data analysis on LIGO S5 data and projections

Projections with the Advanced detectors

Projected strain sensitivities

We made use of the projections on the strain
sensitivities of the Advanced detectors during
the scheduled upgrade phases in order to com-
pute what will be their sensitivity to an SGWB
with non-standard polarizations.

P.-law Pol.
Detector pair

Design sens.

ν comp. (2019-2021)

0

ΩT
0

AdV - AdLIGO(L) 2.49×10−8

AdLIGO(L) - (H) 2.59×10−9

ΩV
0

AdV - AdLIGO(L) 1.99×10−8

AdLIGO(L) - (H) 3.47×10−9

ΩS
0

AdV - AdLIGO(L) 1.47×10−8

AdLIGO(L) - (H) 3.53×10−9

3

ΩT
3

AdV - AdvLIGO(L) 1.27×10−7

AdvLIGO(L) - (H) 5.58×10−8

ΩV
3

AdV - AdLIGO(L) 1.45×10−7

AdLIGO(L) - (H) 2.69×10−8

ΩS
3

AdV - AdLIGO(L) 1.40×10−7

AdLIGO(L) - (H) 2.17×10−8
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Conclusions

Summary and Conclusions

Many theoretical models, both astrophysical and cosmological, predict a stochastic

background of gravitational waves. This background is of great interest in the study of

the early Universe cosmology and very-high energy physics;

for the study of the SGWB, we must include the possibilities of Alternative Theories of

Gravity. The SGWB signal can also be used to test these theories;

the most general SGWB can allow at most 6 modes of polarization: detecting these

modes can be a valuable, �model-independent� test for alternative theories of gravity;

In the present work, we generalized the standard cross-correlation analysis, developed by

[Allen and Romano, 1999], including the possibility of non-standard polarizations and of a

frequency-by-frequency reconstruction of the SGWB spectrum;

we made use of the LIGO S5 data to test the possible presence of an SGWB signal. No

evidence for an SGWB signal in these data;

with the predicted strain sensitivities of the advanced GW detectors, we evaluated the

projections on their sensitivities to the SGWB;

these projections lie under the energy densities expected by many cosmological and

astrophysical models;

if these models are predictive, we will be able in the next decade to detect an SGWB

signal. Otherwise, we will improve current upper limits and bounds on them.
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evidence for an SGWB signal in these data;

with the predicted strain sensitivities of the advanced GW detectors, we evaluated the

projections on their sensitivities to the SGWB;

these projections lie under the energy densities expected by many cosmological and

astrophysical models;

if these models are predictive, we will be able in the next decade to detect an SGWB

signal. Otherwise, we will improve current upper limits and bounds on them.
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Notes on the assumptions about the SGWB and its characterization

We make some assumptions, and ��rst-order� approximations, in order to study a very general
SGWB, produced by any mechanism within the paradigm of any generic theory of gravity:

Stationarity: it means that its statistical properties must not change for all the duration of
our experiments (usually several orders of magnitude shorter than the SGWB time scales);

Gaussianity: justi�ed by the central limit theorem if the number of independent sources
that contribute to the SGWB is large enough;

Isotropy: that is, no preferred directions, as it is, in �rst approximation, for the CMB.

All these assumptions are well justi�ed for a background of cosmological origin. On the other
hand, in increasing order of approximation, they may not hold for an SGWB of astrophysical
origin if the number of sources is small and they are distributed mostly in our galaxy.

If we take these assumption as true, the most general SGWB we are looking for:

can be described at most by six modes of polarization: two tensor circular polarizations
(±2), two vector circular polarizations (±1) and two scalar modes (b and `);

it can be fully characterized by the two point correlator of the signal outputs of a
su�cient number of detector pairs (ij):

hi(t)≡ hab(t)Dab
i :

〈
h̃∗i (f ) h̃j(f ′)

〉
= δ (f − f ′)∑

A

1
2

SA
h (f )Γ

A
ij(f )

A =±2,±1,0 and i, j = 1,2, ...,N for a network of N GW detectors.
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Notes on the proposed algorithm for studying the SGWB

The MLEs for the components of the power spectrum density SA
h (f ) are equal to those obtai-

ned by Seto and Taruya and Nishizawa et al. in the particular cases of circular tensor
polarization and tensor, vector and scalar modes with no circular polarizations, respectively;

we can resolve all the �ve components of the power spectrum
density if we have a large enough number N of detectors
(
(N

2

)
> 5, or 3 if we exclude circular polarizations) or if we

assume some power-low model for these spectra:
SA

h (f ) = SA
h · f ν . With less detectors we can only �nd some

directions, in the polarization space, where the detectability is
most favorable, that is, our apparatus is most sensitive;

we also recovered the algorithm described by Allen and
Romano, where they considered only unpolarized tensor
modes, as a special case. Respect to their algorithm, the
introduction of other degrees of freedom, in the form of
non-standard polarizations, reduce the statistics and hence the
sensitivity we can reach;
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SGWB energy density sensitivity

What is the minimum value of the SGWB spectral density required so that our detectors
and our decision rule are able to correctly identify its presence with a (�xed) detection
probability γ?
We �nd those values of SA

h (f ) for which the detection probability γ(µ) = 1−β (µ) is equal
to or greater than the desired rate γ:

γ(µ)≡ 1−β ≡ detection rate= P
(
s̃ ∈ R1|H1

)
=
∫

R1

ds̃p
(
s̃|H1

)
= 1

2 erfc
(
erfc−1(2α)−µ

/√
2σ2

)
> γ

erfc−1(2α)−erfc−1(2γ)6 µ
/√

2σ2,

assuming a power-law template

SA
h (f ) = SA

ν

(
f
f0

)ν

,

and substituting the expectation value and the variance of the stochastic variable YG,
we obtain:

SA
ν >

1√
Ttot

(∫
df
(

f
f0

)2ν
(
ΓA

ij(f )
)2

Pi(f )Pj(f )

)−1/2

P1/4
(
erfc−1(2α)−erfc−1(2γ)

)1/2
.



Generalized detection algorithm for an SGWB with non-standard polarizations

Bibliography

Bibliographic references I

H. Collins, Gravity's Shadow: The Search for Gravitational Waves (University of Chicago Press, 2010),
ISBN 9780226113791.

T. Regimbau, Research in Astronomy and Astrophysics 11, 369 (2011), .

M. S. Turner, Phys. Rev. D 55, R435 (1997), .

N. Barnaby, E. Pajer, and M. Peloso, Phys. Rev. D 85, 023525 (2012), .

X. Siemens, V. Mandic, and J. Creighton, Phys. Rev. Lett. 98, 111101 (2007), .

L. A. Boyle and A. Buonanno, Phys. Rev. D 78, 043531 (2008), .

V. Mandic and A. Buonanno, Phys. Rev. D 73, 063008 (2006), .

T. Regimbau and V. Mandic, Class.Quant.Grav. 25, 184018 (2008), .

M. Maggiore, Physics Reports 331, 283 (2000), ISSN 0370-1573, .

P. Binetruy, A. Bohe, C. Caprini, and J.-F. Dufaux, JCAP 1206, 027 (2012), .

S. Capozziello and M. De Laurentis, Phys. Rept. 509, 167 (2011), .

T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Phys.Rep. 513, 1 (2012), .

C. M. Will, Theory and experiment in gravitational physics (Cambridge University Press, Cambridge
England New York, NY, USA, 1993), ISBN 0521439736.

B. Abbott et al. (LIGO Scienti�c and Virgo Collaborations), Phys. Rev. Lett. 116, 221101 (2016), .

D. M. Eardley, D. L. Lee, A. P. Lightman, R. V. Wagoner, and C. M. Will, Phys. Rev. Lett. 30, 884
(1973), .

LIGO Scienti�c Collaboration, Virgo Collaboration, J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D.
Abbott, M. Abernathy, T. Accadia, F. Acernese, et al., ArXiv e-prints 1304.0670 (2013), .

B. Abbott et al. (L. I. G. O. Scienti�c Collaboration & Virgo Collaboration), Nature 460, 990 (2009), .

P. F. Michelson, Monthly Notices of the Royal Astronomical Society 227, 933 (1987), .

E. Thrane, N. Christensen, R. M. S. Scho�eld, and A. E�er, Phys. Rev. D 90, 023013 (2014), .



Generalized detection algorithm for an SGWB with non-standard polarizations

Bibliography

Bibliographic references II

B. Allen, In Les Houches 1995, Relativistic gravitation and gravitational radiation 373-417 p. 373
(1997), , .

S. G. Crowder, R. Namba, V. Mandic, S. Mukohyama, and M. Peloso, Physics Letters B 726, 66 (2013),
.

A. Lue, L.-M. Wang, and M. Kamionkowski, Phys.Rev.Lett. 83, 1506 (1999), .

N. Seto and A. Taruya, Phys. Rev. Lett. 99, 121101 (2007), .

B. Allen and J. D. Romano, Phys. Rev. D 59, 102001 (1999), , .

E. E. Flanagan, Phys. Rev. D 48, 2389 (1993), .

M. Maggiore, Gravitational Waves: Volume 1: Theory and Experiments, Gravitational Waves (Oxford
University Press, Oxford, 2008), ISBN 9780198570745, .

S. Kay, Fundamentals of Statistical Signal Processing: Detection theory, Prentice Hall Signal Processing
Series (Prentice-Hall PTR, 1998), ISBN 9780135041352, .

J. Neyman, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and
Physical Sciences 236, 333 (1937), ISSN 00804614, .

N. Seto and A. Taruya, Phys. Rev. D 77, 103001 (2008), .

A. Nishizawa, A. Taruya, K. Hayama, S. Kawamura, and M.-a. Sakagami, Phys. Rev. D 79, 082002
(2009), .


	Introduction
	Production mechanisms of an SGWB
	General features
	Alternative theories of gravity
	Additional polarization modes

	Detector characterization
	The detector signal
	Cross-correlation Analysis
	SGWB signal cross-correlation
	Overlap reduction functions

	Detection theory
	Standard cross-correlation analysis
	Generalized detection algorithm

	Data analysis on LIGO S5 data and projections
	Analysis LIGO S5 data
	Projections with the Advanced detectors
	Graphics and conclusions

	Conclusions
	Backup material
	Bibliography

