

Gravitational Waves in Bouncing Cosmology

Ido Ben-Dayan BGU Nov. 2016

Horizon Problem of the Hot Big Bang

Inflation generates a nearly scale invariant primordial power spectrum of density and gravitational waves perturbations.

The Holy Grail: Primordial GW

- * Proves that gravity is quantized!
- * Access to energies ~10¹⁶ GeV
- Inflation a period of accelerated expansion explains the flatness and isotropy of the observed Universe.
- * "Slowly-rolling" scalar field
- Vacuum fluctuations during inflation predict a nearly scaleinvariant density fluc. power spectrum and gravitational waves (GW) spectrum – explains structure formation in the Early Universe
- * Generally, a detection of **GW** is considered a **"proof"** of inflation.

Theory meets Observations

Open Questions in Early Universe

- * Big Bang Singularity?
- * Primordial GW?
- * Inflation vs. Alternatives?
- Within Inflation:
- 1) UV completion (from string theory?)
- 2) Model selection. Simple models are ruled out
- 3) "Measure problem"

=> Bouncing Cosmology!

Motivation I: Big Bang Singularity! New Physics is necessary! Some NP discards inflation =>Bouncing Cosmology

Motivation II: **Sourced Fluctuations give** a rich phenomenology very different from standard Slow-Roll.

Are GW on CMB scales "proof" of Inflation?

I will demonstrate: **Observable Gravitational** Waves on CMB Scales (and LIGO ?) in a Bouncing Cosmology Using **Sourced Fluctuations !**

Brief History of Time in a Bouncing Model

- Universe slowly contracts. b<<1, tau<0. Isotropizes and flattens!
 Vacuum fluctuations generate spectra. (Ekpyrosis/Pre Big Bang...)
- Kinetic Energy Dominated Contraction. (b=1/2)
- **BOUNCE!** (H flips sign), No Big Bang singularity (via Galileons, G-Bounce, Ghost condensate...). In this talk, I only discuss the slow contraction phase, not discussing the Bounce itself.
- * Kinetic Energy Dominated Expansion. (b=1/2, tau>0)
- * Standard Hot Big Bang.

Inflation-Bounce Duality

Inflation		Bounce	BKL Instability!			
*	Power law inflation	 * Ekpyrosis (slow contraction) 	* Matter Bounce			
*	p->infinity	* 0 <p<<1< td=""><td>* p=2/3</td></p<<1<>	* p=2/3			
*	b=-1	* b~p<<1	* b=2			
*	V ₀ >0	* V _o <0	* V _o <0			
*	Epsilon, eta <<1	* Epsilon, eta >>1	* Epsilon, eta ~1			
$V(\varphi) = V_0 e^{-\sqrt{2/p}\varphi}, \epsilon = -\frac{\dot{H}}{H^2} = \frac{1}{p}$						
$a = a_0(-t)^p = a_1(-\tau)^b, b \equiv \frac{p}{1-p}$						

Early Universe Cosmology

Inflation

- Universe expands exponentially ~dS space
- * Isotropy & Homogeneity
- Vacuum fluctuations generate spectra
- Nearly scale inv. scalar spectrum
- * Nearly scale inv. GW spectrum
- * Geodesically Incomplete

Bounce

- Universe slowly contracts towards Minkowski space
- * Isotropy & Homogeneity
- * Vacuum fluctuations generate spectra
- * Nearly scale inv. scalar spectrum* (2-fields).
- Blue GW spectrum
- Violates Null Energy Condition

Why are GW so robust?

- * Depend only on the background metric.
- * Valid for all FLRW cosmologies (Inflation (b=-1), bounce (b<<1)...)</p>
- * In Bouncing models H_{CMB}<<H_{CMB}^{INF}

Coupling to Gauge Fields

$$\begin{split} \mathcal{S} &= \int d^4 x \sqrt{-g} \left[\frac{M_p^2}{2} R - \frac{1}{2} (\partial \varphi_1)^2 - V(\varphi_1) - I^2(\varphi_1) \left\{ \frac{1}{4} F^{\mu\nu} F_{\mu\nu} - \frac{\gamma}{4} \tilde{F}^{\mu\nu} F_{\mu\nu} \right\} \\ I(\varphi_1) &= (-\tau)^{-n} \\ * \text{ Gauge Field mode equation:} \\ \tilde{A}''_{\lambda} &+ \left(k^2 + 2\lambda \xi \frac{k}{\tau} - \frac{n (n+1)}{\tau^2} \right) \tilde{A}_{\lambda} = 0 \\ \xi &\equiv -n\gamma, \quad \tilde{A} \equiv I(\tau) A \end{split}$$

00

* Invariance under:

$$n \to -1 - n, \quad \gamma \to -\frac{n}{1+n}\gamma$$

Gauge Fields Production

* Controlled Backreaction. (-2<n<1).

 $\frac{1}{2} \langle \vec{\tilde{E}}^2 + \vec{\tilde{B}}^2 \rangle \ll 3M_{pl}^2 H^2 \Rightarrow H/M_{pl} \ll \sqrt{3/D_{1,2}(n)} \, p^2 \xi^{3/2} e^{-\pi\xi}$

- * Exponential enhancement of gauge quanta of only one polarization
- * 'Sourced Spectra' uncorrelated with vaccum fluc.

$$\tilde{A}(k, \tau) \simeq \sqrt{-\frac{\tau}{2\pi}} e^{\pi\xi} \Gamma(|2n+1|) |2\xi k\tau|^{-|n+1/2}$$

 $-k\tau \ll 1/\xi$

Solutions for GW with a Source

- Valid for all FLRW cosmologies (Inflation (b=-1), matter(b=2), ekpyrotic (b<<1)...)</p>
- * h- GW pert., G Ret. Green's function, J source, Agauge fluc. $a \sim (-t)^p - (-\tau)^b$

$$\begin{split} \hat{h}_{\lambda}(\tau,\vec{k}) &= \frac{2}{M_{pl}a} \hat{Q}_{\lambda}(\tau,\vec{k}) \\ & \left[\partial_{\tau}^{2} + \left(k^{2} - \frac{a''}{a} \right) \right] Q_{\lambda}\left(\tau,\vec{k}\right) \simeq J_{\lambda}\left(\tau,\vec{k}\right), \quad Q_{\lambda}\left(\tau,\vec{k}\right) = \int^{\tau} d\tau' G_{ret.}\left(\tau,\tau'\right) J_{\lambda}\left(\tau',\vec{k}\right), \\ G_{ret.}(\tau,\tau') &= i\Theta(\tau-\tau')\frac{\pi}{4}\sqrt{\tau\tau'} \left[H_{1/2-b}^{(1)}(-k\tau)H_{1/2-b}^{(2)}(-k\tau') - H_{1/2-b}^{(1)}(-k\tau')H_{1/2-b}^{(2)}(-k\tau) \right] \\ G_{ret.}(-k\tau \ll 1, b \to 0) \simeq \Theta(\tau-\tau')\frac{\sin(-k\tau')}{k} \\ J_{\lambda}(\tau,\vec{k}) &= -\frac{1}{M_{pl}a} \int \frac{d^{3}p}{(2\pi)^{3/2}} \sum_{\lambda'=\pm} \epsilon_{i}^{(\lambda)*}(\vec{k})\epsilon_{j}^{(\lambda)*}(\vec{k})\epsilon_{i}^{\lambda'}(\vec{p})\epsilon_{j}^{\lambda'}(\vec{k}-\vec{p}) \left\{ \frac{2\xi}{-\tau}\sqrt{p|\vec{k}-\vec{p}|} + p|\vec{k}-\vec{p}| \right\} \\ \times \tilde{A}_{\lambda'}(\tau,\vec{p})\tilde{A}_{\lambda'}(\tau,\vec{k}-\vec{p}) \left[\hat{a}_{\lambda'}(\vec{p}) + \hat{a}_{\lambda'}^{\dagger}(-\vec{p}) \right] \left[\hat{a}_{\lambda'}(\vec{k}-\vec{p}) + \hat{a}_{\lambda'}^{\dagger}(-\vec{k}+\vec{p}) \right] \\ \sim A^{2} \sim e^{2\pi\xi} \end{split}$$

Sourced Fluctuations

- Coupling inflaton/bouncer to gauge fields induces a source term.
- * GW production shuts down at the end of slow-contraction.
- * Sourced Spectra for -2<n<-5/4 (⇔1/4<n<1)

$$\begin{bmatrix} \partial_{\tau}^{2} + \left(k^{2} - \frac{a''}{a}\right) \end{bmatrix} \frac{h_{\lambda}}{a} \left(\tau, \vec{k}\right) = J_{\lambda} \left(\tau, \vec{k}\right) \\ J_{\lambda} \sim \tilde{A}^{2} \sim e^{2\pi\gamma|n|} \\ \mathcal{P}_{t}^{s} \sim J_{\lambda}^{2} \sim e^{4\pi\gamma|n|} k^{4(2+n)} \\ \mathcal{P}_{T}(n,\xi;n\geq -1/2) = \mathcal{P}_{T}(-1-n,\xi;n\leq -1/2). \\ \end{bmatrix} \frac{h_{\lambda}}{a} \left(\tau, \vec{k}\right) = J_{\lambda} \left(\tau, \vec{k}\right) \\ \text{Exponential enhancement and arbitrarily close to scale invariance BUT} \\ \text{BLUE and CHIRAL !} \end{bmatrix}$$

Results

* Blue chiral GW signal, $0 < n_T \sim 0.3$.

* Observable on CMB, n_T~0.3 Observable by LIGO.

Discerning Paradigms – Work in progress

- * Until now CMB slowly ruling out inflationary models
- * By considering LI (and chirality) we can rule out entire paradigms!

	СМВ	LI	n _T	Chirality
Slow-roll Inflation	~	×	~<0	×
Sourced Inflation	~	~	~<0, +blue	✓
Bounce	×	~	~2-3	×
Sourced Bounce	~	~	0 <n<sub>T~<0.3</n<sub>	~

Discerning Paradigms

Sourced Inflation detectable by LI if in the strong backreaction regime. Sourced Bounce has constant n_T in the weak backreaction regime => very different spectra

Discerning Paradigms

- * Null detection 'status quo' maintained
- * Only CMB detection Bounce is ruled out
- * Only LI detection Slow-Roll Inflation ruled out
- * Any chirality detection Slow-Roll Inflation and Bounce ruled out, Sourced fluctuations confirmed!
- CMB and LI detection Slow-Roll Inflation and Bounce ruled out. Constant n_T – Sourced Bounce, varying n_T – Sourced Inflation

Conclusions

- Sourced Bounce models give observable GW on CMB scales.
- Slightly blue chiral spectrum –discernable from other paradigms
- * TO DO: scalar spectrum, non-gaussianity, other models, effects on bounce, novel bouncing mechanisms...

We now have a new testable paradigm for Early Universe Physics without the Big Bang singularity! By measuring GW on different scales we test whole paradigms!