Cornering natural SUSY with $\sqrt{s} = 13$ TeV data

Les Rencontres de Moriond *EW Interactions and Unified Theories* La Thuile, Italy 18-25 March 2017

Andreas Petridis On behalf of the ATLAS and CMS collaborations

University of Adelaide

March 20, 2017

Supersymmetry and Naturalness

The most studied extension of the SM among any BSM theory. Advantages:

- Could solve the hierarchy problem through the one loop stop correction;
- Could unify the fundamental interactions of nature;
- Could provide a dark matter candidate, if R-Parity is conserved;
- Naturalness requierement by the tree-level relation in MSSM:

$$rac{-m_Z^2}{2} = |\mu|^2 + m_{H_u}^2$$

- stops expected to be light (< ~ 1 TeV);
- higgsinos with masses below 350 GeV;
- a not too heavy gluino;

natural SUSY

 \tilde{q}

Overview

Analyses covered

- ĩĩ
- bb
- $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$

Compressed spectra

$$(\Delta m = m_{ ilde{\chi}_1^\pm/ ilde{\chi}_2^0} - m_{ ilde{\chi}_1^0} < 30 \,\, {
m GeV})$$

ATLAS

- \tilde{t} 0-lepton (ATLAS-CONF-2017-020)
- $ilde{t}_2
 ightarrow ilde{t}_1 \; Z/H \; (extsf{atlas-conf-2017-013})$
- *t̃* 1-lepton R-Parity Violation(ATLAS-CONF-2017-013)

Link to ATLAS public results

- \tilde{t} 0-lepton (SUS-16-049)
- *t* 2-leptons (SUS-17-001)
- 2-soft-leptons (SUS-16-042)
- $HH \rightarrow 4b$ (SUS-16-044)
- \tilde{b} 0-lepton (SUS-16-032)
- $\tilde{b} h \rightarrow \gamma \gamma$ (SUS-16-045)

Link to CMS public results

... from stops ...

... to sbottoms ...

The stop searches: $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$

- High mass region $\Delta m > m_t$
 - boosted topologies
- Intermediate region $\Delta m(ilde{t}_1, ilde{\chi}_1^0) < m_t$
 - Examine "3-body-decays"
- Compressed region $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) < m_W + m_b$
 - Examine "4-body-decays"
 - Challenging region due to the soft products of the decays
 - high background rates
 - $ilde{t}_1
 ightarrow c ilde{\chi}_1^0$ challenging due to charm tagging
- Dedicated searches based on the lepton multiplicities

ATLAS Stop O-lepton ATLAS-CONF-2017-020

High mass - $\Delta m(ilde{t}_1, ilde{\chi}_1^0) > m_t$

- 2 inclusive SRs targeting different $\Delta m = m_{\tilde{t}} - m_{\tilde{\chi}_1^0}$ with 3 subcategories based on t-tagged and W-tagged jets (**TT**, **TW**, **T0**)
- Disctriminant variables: $m_{jet,R=1.2}^{0,1}, m_T^{b,min}, m_T^{b,max}, E_{T}^{miss}$
- Main background contribution comes $Z(\nu\nu) + jets$, followed by $t\bar{t}V$ (where V = W, Z) and $t\bar{t}$

 $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim m_t$

- Based on Recursive Jigsaw Reconstruction (RJR) by requiring an Initial State Radiation jet
- SRs binned in RISR ($\equiv E_{\rm T}^{\rm miss}/p_T^{ISR} \sim m_{\tilde{\chi}_1^0}/m_{\tilde{t}}$)
- Main background contribution $t\bar{t}$

ATLAS Stop 0L - Results ATLAS-CONF-2017-020

- Top left: Data and Standard Model (SM) predictions in Signal Regions (SRs)
- 95% CL limits in the mass planes $m_{\tilde{t}_1} m_{\tilde{\chi}_1^0}$ for $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ (top right) and $m_{\tilde{g}} m_{\tilde{t}_1}$ (bottom right) in fully hadronic final states

CMS Stop O-lepton CMS-SUS-16-049

High $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0)$

- Search regions are defined from different requirements on $m_T(b_{1,2}, E_T^{miss}), t/W$ -tagged jets, N_{jets} , "resolved-top", E_T^{miss}
- 51 disjoint search regions

Low $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0)$

- ISR approach
- 53 disjoint regions
- Developmet of a novel soft b-tagging algorithm based on the presence of a secondary vertex for recovering b-tagged below p_T(b) < 20 GeV

CMS Stop O-lepton - Results SUS-16-049

- 95% CL exclusion limits on $pp \rightarrow \tilde{t}_1 \tilde{t}_1$ in three different topologies;
- High mass region: $m_{\tilde{t}_1}$ up to 1.04 TeV and $m_{\tilde{\chi}_1^0}$ up to 500 GeV are probed;
- Low mass region $(\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) < m_W)$: $m_{\tilde{t}_1}$ up to 580 GeV are probed for $m_{\tilde{\chi}_1^0}$ of 540 GeV;
- Bottom exclusion taken from *SUS-16-032*. Mass splits up to 10 GeV have been probed.

iction [pb

CMS Stop two-lepton CMS-SUS-17-001

• Searches based on different flavors of m_{T2} calculation $(m_{T2}(\ell \ell), m_{T2}(b\ell b\ell))$;

$$M_{T2}(\ell\ell) = \min_{\vec{p}_{T1}^{\min} + \vec{p}_{T1}^{\min} = \vec{E}_{T}^{\min}} \left(\max\left[M_{T}(\vec{p}_{T}^{\min}, \vec{p}_{T1}^{\min}), M_{T}(\vec{p}_{T}^{\min}, \vec{p}_{T2}^{\min}) \right] \right)$$

- Construct 12 disjoint SRs based on $E_{
 m T}^{
 m miss},\ m_{T2}(\ell\ell)$ and $m_{T2}(b\ell b\ell)$
 - Dominant background in low m_{T2} region comes from single top and $t\bar{t}$
 - In high m_{T2} regions $t\bar{t} + X$ has significant contributions with $t\bar{t}Z(\nu\nu)$ being the dominant one. CRs defined in

$$pp
ightarrow t ar{t} Z
ightarrow (t
ightarrow b \ell^{\pm}
u) (t
ightarrow b j j) (Z
ightarrow \ell \ell)$$

	1
leptons	2 (e or μ), opposite charge
m(ll)	≥ 20
$M_Z - m(ll)$	$> 15 \mathrm{GeV}$, same flavor only
$N_{\rm jets}$	≥ 2
N _{bjets}	≥ 1
$E_{\rm T}^{\rm miss}$	$> 80 \mathrm{GeV}$
S	$> 5 { m GeV}^{1/2}$
$\cos \Delta \phi(E_{\rm T}^{\rm miss}, j_1)$	< 0.80
$\cos\Delta\phi(E_{\rm T}^{\rm miss}, j_2)$	< 0.96
-	

CMS Stop two-lepton CMS-SUS-17-001

- Observation agrees within errors with the Standard Model expectations
- 95% CL exclusion limits on the mass plane $m_{\tilde{t}_1} m_{\tilde{\chi}_1^0}$
- Interpretations on $\tilde{t} \to b \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{\pm} \to W^{\pm} \tilde{\chi}_1^0$ are also available

Summary of $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ searches

Updated results from CMS are expected in time for Moriond QCD

Complementary models studied from ATLAS and CMS

<□> <圖> < E> < E> EI= のQ@

ATLAS $\tilde{t} Z/H$ ATLAS-CONF-2017-019

- Searches for \tilde{t} production with Higgs (*h*) or *Z* bosons
- $\tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \ \tilde{\chi}_2^0 \rightarrow h/Z \tilde{\chi}_1^0$
- $\tilde{t}_2 \rightarrow h/Z \tilde{t}_1, \ \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$. Provide additional sensitivity in the region $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim m_t$
- Final states considered:
 - three-leptons plus a b-tag jet (3llb), aiming at top squark decays involving Z boson
 - Dominant backgrounds: $t\bar{t}Z$, WZ.
 - one-lepton plus four b tag jet (1ℓ4b), targeting top squark decays involving Higgs boson
 - Dominant background: *tī*;
 - Three overlapped SRs targeting different mass splits $(m_{\tilde{t}_2} m_{\tilde{\chi}_1^0})$ have been designed for each final-state

ATLAS $\tilde{t} Z/H$ ATLAS-CONF-2017-019

- **Top:** 95% CL exclusion limits on $m_{\tilde{t}_2} - m_{\tilde{\chi}_1^0}$ for a fixed $m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0} = 180$ GeV, assuming BR($\tilde{t}_2 \rightarrow Z \tilde{t}_1$)=1 (left) BR($\tilde{t}_2 \rightarrow h \tilde{t}_1$)=1 (right)
- Bottom right: 95% CL exclusion limits on $m_{\tilde{t}_1} - m_{\tilde{\chi}_2^0}$ for $m_{\tilde{\chi}_1^0} = 0$ GeV, assuming a BR $(\tilde{\chi}_2^0 \rightarrow Z \tilde{\chi}_1^0)$ =0.5 and BR $(\tilde{\chi}_2^0 \rightarrow h \tilde{\chi}_1^0)$ =0.5

Discussed in Emma's talk: Pushing limits on generic squarks and gluinos at LHC at 13 TeV $_{t}$

- Stop Searches performed in R-Parity Violation models
- Final-state examined: $1\ell + jets$ final state
- SRs are binned in jet multiplicity with the lower one being at five-jets
- Dominant backgrounds in $N_{b-tag} = 0$ are $t\bar{t} + jets$ and W + jets while for $N_{b-tag} > 0$ the dominant source is $t\bar{t} + jets$

Discussed in Emma's talk: Pushing limits on generic squarks and gluinos at LHC at 13 TeV $_{t}$

- Stop Searches performed in R-Parity Violation models
- Final-state examined: $1\ell + jets$ final state
- SRs are binned in jet multiplicity with the lower one being at five-jets
- Dominant backgrounds in $N_{b-tag} = 0$ are $t\bar{t} + jets$ and W + jets while for $N_{b-tag} > 0$ the dominant source is $t\bar{t} + jets$ $\tilde{t} = 1500$

... from stops ...

... to sbottoms ...

CMS Sbottom searches CMS-SUSY-16-032

- Non-compressed ($\Delta m(\tilde{b}_1, \tilde{\chi}_1^0) > 150$ GeV):
 - Main discriminants: $Min[M_T(i_1, E_T^{miss}), M_T(i_2, E_T^{miss})], cotransverse$ mass (m_{CT}) and H_T (scalar sum of the two leading jets)
 - SRs binned in m_{CT} and H_T
- Compressed $(\Delta m(\tilde{b}_1, \tilde{\chi}_1^0) < 150 \text{ GeV})$:
 - Based on an ISR jet recoiling against $E_{\rm T}^{\rm miss}$.
 - Compressed SRs are binned in $E_{\rm T}^{\rm miss}$ and b/c-tag jet multiplicity

CMS search in razor+ $H \rightarrow \gamma \gamma$ (sbottom) CMS-SUY-16-045

- In the MSSM Higgs bosons may be produced through the cascade decays of heavier sparticles;
- Search performed in $H\to\gamma\gamma$ decay-mode and in association with at least one jet
- Approach based on razor variables and the momentum and mass resolution of the diphoton system
- Two main classes of background:
 - SM Higgs (taken from MC)
 - non-resonant QCD estimated from a data-driven technique by fitting the $\gamma\gamma$ mass distribution (dominant systematic uncertainty arises from normalization and shape of that function)

비로 《로》《로》《티》《타

CMS search in razor+ $H \rightarrow \gamma \gamma$ (sbottom) CMS-SUY-16-045

- Left: Observed significance in units of standard deviations per search region; The yellow and green bands represent the 1σ and 2σ regions, respectively.
- Right: 95% CL exclusion limits on the mass plane $m_{\tilde{b}} m_{\tilde{\chi}_1^0}$

Compressed Electroweakino searches

◆□> ◆□> ◆目> ◆日> ◆□> ◆□> ◆□>

CMS two-soft-lepton CMS-PAS-SUS-16-048

- Naturalness imposes constraints on the masses of higgsinos
- Light higgsinos would likely have a compressed mass spectrum
- Experimentaly challenging signature: Muons p_T down to 3.5 GeV has been considered
- Results interpreted in the context of direct $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ (cross sections based on Wino scenario)

Summary

- Both experiments have a rich program on the SUSY production of 3rd generation squarks;
- Both experiments improved the object reconstruction and identification to obtain sensitivities in very challenging regions in the mass plane m_{t̃1} - m_{χ⁰}.
- Advanced techniques have also been employed to gain sensitivity in the different regions;
- Current searches explore a wide range of final states and topologies;
- All searches produced null results so far;
- More data are expected to be collected in the upcoming years, stay tuned and you never know what the data might be hiding!

Thank you

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Back-up

<□> <圖> < E> < E> EI= のQ@

Background estimation strategies

SUSY searches heavily rely on our understanding of the Standard Model processes Reducible background

Receives contributions from non-prompt leptons. Estimation based on data-driven techniques (Matrix Method, Fake Factor);

Irreducible backgrounds

Normalize Monte Carlo predictions $(t\bar{t}, VV, ..)$ to data in dedicated Control Regions (CR);

- Extracted Normalization Factor (NF) is validated in Validation Regions(VR);
- Final background estimation comes from a simultaneous likelihood fit of Signal Regions and CR;

Backgrounds producing "fake" $E_{\rm T}^{\rm miss}$ due to jet mismeasurement Contributions from this category are suppressed by requiring the jets and $E_{\rm T}^{\rm miss}$ to not

point in the same direction $(\Delta \phi (jets, E_{\rm T}^{\rm miss}))$

Small backgrounds

Contributions from these sources ara takes directly from Monte Carlo predictions.

- Searches performed for right-handed \tilde{t} pair production with the \tilde{t} decaying to a bino or higgsino $\tilde{\chi}_1^0$;
- $\tilde{\chi}_1^0$ undergoes RPV decays with a non-zero $\lambda_{323}^{''} \ (\approx \mathcal{O}(10^{-1} 10^{-2}))$
- Final-state examined: $1\ell + jets$ final state
- Three sets of jet p_T thresholds (40, 60, 80) have been considered to provide sensitivity to a broad range of possible signals
- SRs are binned in jet multiplicity with the lower one being at five-jets
- Dominant backgrounds in $N_{b-tag} = 0$ are $t\bar{t} + jets$ and W + jets while for $N_{b-tag} > 0$ the dominant source is $t\bar{t} + jets$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

tt
 t it
 + jets estimation based on a data-driven technique. Extraction of an initial template of the b-tag multiplicity spectrum in events with five jets and the parameterization of the evolution of this template to higher jet multiplicities.

$$N_{j,b}^{t\bar{t}+j\text{ets}} = N_j^{t\bar{t}+j\text{ets}} \cdot f_{j,b}$$

$$f_{(j,1),b} = f_{j,b} \cdot x_0 + f_{j,b} \cdot x_1 + f_{j,b} \cdot x_2 + f_{j,b}$$

where x_i describe the probability of one additional jet to be either not b-tagged (x_0) , b-tagged (x_1) or b-tagged and leading to a second b-tagged jet to move into the fiducial acceptance (x_2)

• Validation of the jet-scaling parameterization in dileptonic $t\bar{t}$ events

A D A A B A A B A A B A B

 Right: Expected SM background and observation in different b-tag multiplicities in l + 9jets final state

 $m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0}$ for pure bino or pure higgsino $\tilde{\chi}_1^0$

ATLAS Stop two-leptons ATLAS-CONF-2016-076

.. highlights from 2016 summer confereces

- Examining t
 ₁ pair production in three-body-decays;
- Searches based on super-razor variables;
- Particularly sensitvite in $m_W + m_b < \Delta m(\tilde{t}_1, \tilde{\chi}_1^0) < m_t$
- Two dedicated SRs, one for $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim m_W$ and the other $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim m_t$

 $\tilde{t} \to b \tilde{\chi}_1^{\pm}, \ \tilde{\chi}_1^{\pm} \to W \tilde{\chi}_1^0$

...motivated by gaugino universality

Searches based on fully hadronic final states ATLAS-CONF-2016-077 CMS-SUS-16-049

p

A. Petridis

ATLAS Sbottom searches Eur. Phys. J. C (2016) 76:547 highlights from 2015 data sample

- Searches for $\tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$:
- Examining final states with exactly two b-tag jets and $E_{\rm T}^{\rm miss}$
- Main discriminant variable:

$$m_{\rm CT}^2(v_1, v_2) = [E_{\rm T}(v_1) + E_{\rm T}(v_2)]^2 - [\boldsymbol{p}_{\rm T}(v_1) - \boldsymbol{p}_{\rm T}(v_2)]^2$$

• Bound for \tilde{b} is given by:

$$m_{CT}^{max} = (m_{ ilde{b}_1}^2 - m_{ ilde{\chi}_1^0}^2)/m_{ ilde{b}_1}$$

CMS Stop one-lepton CMS-PAS-SUS-16-028

New results will be available on Moriond QCD

- Four main SRs with different N_{jets} and M_{T2}^W requirements which are then binned in $E_{\rm T}^{\rm miss}$
- Main discriminants:

 M_{T2}^W : the information from on-shell W-boson is included in the m_{T2} calculator Modified topness variable t_{mod} for further background rejection

CMS Stop one-soft-lepton CMS-PAS-SUS-16-031

- Direct *t*₁*t*₁ production with subsequent four-body-decays;
- Exploring the very-low p_T region of leptons

Variable	SR1a-c, CR1a-c	SR2, CR2	CR(tf)		
Emiss (GeV)	>300	>300	>200		
H _T (GeV)	>400	-	>300		
p _T (ISR jet) (GeV)	>100	>325	>100		
Number of hard jets	≤ 2	≤ 2	≤2		
$\Delta \phi$ (hard jets) (rad)	<2.5	<2.5	<2.5		
Number of b jets	0	$\geq 1 \text{ soft}$	(≥1 soft and ≥1 hard)		
	0	0 hard	or (≥2 hard)		
$p_{\rm T}(l)$ (GeV)	[5,12][12,20][20,30] (SR)	[5, 12] [12, 20] [20, 30] (SR)	~ 5		
	>30 (CR)	>30 (CR)	25		
$ \eta(l) $	<1.5	<2.4	<2.4		
Q(l)	-1 (a,b) any (c)	any	any		
Lepton rejection	no τ , or additional l with $p_T > 20 \text{ GeV}$				
$m_{\rm T}$ (GeV)	<60 (a), 60–95 (b), >95 (c)	-	-		

ATLAS Stop 1-lepton ATLAS-CONF-2016-050

.. highlights from 2016 summer confereces

- SR1 targets low mass splittings (decay products are fully resolved)
- tN_high targets the high mass region

•
$$m_T = \sqrt{2 p_T^\ell E_T^{\text{miss}} (1 - \cos(\Delta \phi))}$$

35 / 24

• topness: a minimising $\chi^2-{\rm type}$ function quantifying the compatibility with a dileptonic $t\bar{t}$ event

CMS Razor+ $H \rightarrow \gamma \gamma$ cms-sus-16-045

Table 1: A summary of the search region bins in each category is presented. The functional form used to model the non-resonant background is also listed. An exponential function of the form e^{-ax} is denoted as "single-exp"; a linear combination of two independent exponential functions of the form e^{-ax} and e^{-bx} is denoted as "double-exp"; a modified exponential function of the form e^{-ax} is denoted as "mod-exp"; and a Bernstein polynomial of degree n is denoted by "poly-n".

Bin Number	Category	M_R (GeV) Bin	R ² Bin	Non-Resonant Bkg Model
0	HighPt	600 - ∞	0.025 - ∞	single-exp
1	HighPt	150 - 600	0.130 - ∞	single-exp
2	HighPt	1250 - ∞	0.000 - 0.025	single-exp
3	HighPt	150 - 450	0.000 - 0.130	poly-3
4	HighPt	450 - 600	0.000 - 0.035	poly-3
5	HighPt	450 - 600	0.035 - 0.130	single-exp
6	HighPt	600 - 1250	0.000 - 0.015	double-exp
7	HighPt	600 - 1250	0.015 - 0.025	single-exp
8	$H(\gamma\gamma)-H/Z(bb)$	150 - ∞	0.000 - ∞	single-exp
9	HighRes	150 - 250	0.000 - 0.175	mod-exp
10	HighRes	150 - 250	0.175 - ∞	single-exp
11	HighRes	250 - ∞	0.05 - ∞	single-exp
12	HighRes	250 - 600	0.000 - 0.05	poly-2
13	HighRes	600 - ∞	0.000 - 0.05	single-exp
9	LowRes	150 - 250	0.000 - 0.175	poly-3
10	LowRes	150 - 250	0.175 - ∞	single-exp
11	LowRes	250 - ∞	0.05 - ∞	poly-2
12	LowRes	250 - 600	0.000 - 0.05	mod-exp
13	LowRes	600 - ∞	0.000 - 0.05	single-exp