PUSHING LIMITS ON GENERIC SQUARKS AND GLUINOS WITH 13 TEV DATA

MORIOND EW 2017

EMMA KUWERTZ (UNIVERSITY OF VICTORIA) ON BEHALF OF THE ATLAS AND CMS COLLABORATIONS

SEARCHING FOR SUSY @ 13 TEV

SUSY is a highly favoured extension of the SM, and predicts supersymmetric partners to existing SM particles at high energies, but nothing showed up in the LHC Run 1 dataset.

- Significant increase in squark & gluino production cross-section when increasing from 8 to 13 TeV:
 - Effort at both CMS & ATLAS to exploit this early on in Run 2.
- Nothing conclusive reported from partial dataset available for ICHEP 2016
 - First results from the full 2015+2016 dataset available.

FINAL STATE SIGNATURES

- R-parity conservation (RPC)
 - Missing transverse momentum (MET)
 - Stable LSP \rightarrow dark matter candidate?

R-parity violation (RPV)

- ▶Little/no MET
- Unstable LSP \rightarrow multiple final state particles

Squarks & Gluinos – 20th March 2017

SUSY SEARCHES AT ATLAS AND CMS

- Both experiments employ similar analysis techniques when performing searches.
 - Select "hard" SUSY-like signatures using MET, jet/lepton transverse momentum (p_) & multiplicity
 - Exploit more complicated event-level variables to target specific topologies (e.g. recursive jigsaw variables)
 - Many analyses presented today use Δφ(jets,MET) to reject events with "fake" MET due to jet mismeasurement.

SUSY SEARCHES AT ATLAS AND CMS

Both experiments employ similar analysis techniques when performing searches.

- Select "hard" SUSY-like signatures using MET, jet/lepton transverse momentum (p_) & multiplicity
- Exploit more complicated event-level variables to target specific topologies (e.g. recursive jigsaw variables)
- Many analyses presented today use $\Delta \phi$ (jets,MET) to reject events with "fake" MET due to jet mismeasurement.

4

OVERVIEW

Many analyses updated/in progress with the full (2015+)2016 dataset.

NEW RESULTS FOR TODAY

CMS

A

0-lepton + MHT + >=2 jets	– CMS-PAS-SUS-16-033
O-lepton + M _{T2} + >=1 jets	– CMS-PAS-SUS-16-036
1-lepton + >=6 jets	– CMS-PAS-SUS-16-037
Same-sign 2-lepton	– CMS-PAS-SUS-16-035
photon + HT (GMSB)	– CMS-PAS-SUS-16-047
photon + MET (GMSB)	– CMS-PAS-SUS-16-046
TLAS	

≥1-lepton + multijets (RPV)	– ATLAS-CONF-2017-013
0-lepton + 2-6 jets	– ATLAS-CONF-2017-022
► 0/1-lepton, ≥3 b-jets	– ATLAS-CONF-2017-021

ATLAS results page: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults</u>

CMS results page: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS</u>

Squarks & Gluinos – 20th March 2017

ALL HADRONIC SEARCHES

OL, 2-6 JETS [ATLAS]

M_{EFF} BASED ANALYSIS

► High $m_{\text{eff}} \equiv \sum_{i=1}^{n} |\mathbf{p}_{\text{T}}^{(i)}| + E_{\text{T}}^{\text{miss}} \rightarrow \text{high masses}$ ► ≥2-5 jet regions → direct squark/gluino decays

- ≥5-6 jet regions \rightarrow decays via W/Z bosons
- ≥2 large-R jet regions → decays via boosted W/Z bosons

RECURSIVE JIGSAW (RJR) ANALYSIS

• Use the RJR variables [<u>arxiv:1607.08307</u>] to impose specific decay topology assumption

Partition final state jets into two hemispheres so grouped to minimise the hemisphere

OL, 2-6 JETS [ATLAS]

M_{EFF} BASED ANALYSIS

High $m_{\text{eff}} \equiv \sum_{i=1}^{n} |\mathbf{p}_{\text{T}}^{(i)}| + E_{\text{T}}^{\text{miss}} \rightarrow \text{high masses}$

- ≥2-5 jet regions \rightarrow direct squark/gluino decays
- ≥5-6 jet regions \rightarrow decays via W/Z bosons
- ≥2 large-R jet regions → decays via boosted W/Z bosons

RECURSIVE JIGSAW (RJR) ANALYSIS

Use the RJR variables [arxiv:1607.08307] to impose specific decay topology assumption

Partition final state jets into two hemispheres so grouped to minimise the hemisphere

W+JETS

TTBAR

Z→vv

MULTIJETS

- Control regions with isolated leptons.
- Use b-tag/veto to separate ttbar/W+jets.
- Control sample with isolated photons.
- Data driven approach normalised in multijet control regions.

OL+JETS [CMS]

H_T-MHT BASED ANALYSIS

- Targets direct stop/sbottom production and (in)direct squark/gluino decays.
- 174 search regions in total:
 - 5 exclusive N_{int} bins,
 - 4 exclusive N^{jet} bins,
 - 10 exclusive intervals in H₁- MHT plane.

M_{T2} **BASED ANALYSIS**

- Many search regions with events classified according to N_{jet}, H_T and N_{bjet} and binned in MT2
- Cluster final state jets to form two "pseudojets" and calculate M_{T2} as

 $M_{\text{T2}} = \min_{\vec{p}_{\text{T}}^{\text{miss}X(1)} + \vec{p}_{\text{T}}^{\text{miss}X(2)} = \vec{p}_{\text{T}}^{\text{miss}}} \left[\max\left(M_{\text{T}}^{(1)}, M_{\text{T}}^{(2)}\right) \right]$

Multijet background confined to low M_{T2}

9

OL+JETS [CMS]

H_T-MHT BASED ANALYSIS

- Targets direct stop/sbottom production and (in)direct squark/gluino decays.
- 174 search regions in total:
 - 5 exclusive N bins,
 - 4 exclusive N^{jet}_{bist} bins,
 - 10 exclusive intervals in H_{T} MHT plane.

M_{T2} BASED ANALYSIS

- Many search regions with events classified according to N_{jet}, H_T and N_{bjet} and binned in MT2
- Cluster final state jets to form two "pseudojets" and calculate M_{T2} as

$$M_{\text{T2}} = \min_{\vec{p}_{\text{T}}^{\text{miss}X(1)} + \vec{p}_{\text{T}}^{\text{miss}X(2)} = \vec{p}_{\text{T}}^{\text{miss}}} \left[\max\left(M_{\text{T}}^{(1)}, M_{\text{T}}^{(2)}\right) \right]$$

 \blacktriangleright Multijet background confined to low $M_{_{T2}}$

W+JETS

TTBAR

Z→vv

Multijets

- Isolated e/µ regions
 - \rightarrow probability to miss the lepton
- Isolated muon regions
 → smear to expected τ_h p_T distribution.
- Isolated photon regions / use
 Z→II to emulate Z→vv.
- Invert Δφ(jets,MET) cut
 - → extrapolation as a function of H_{T} , MHT and N_{jet}

validation of ttbar/W+jets "lost lepton" background estimate

Background estimates validated using MC-closure tests.

OL+JETS [ATLAS/CMS]

No significant deviation from the Standard Model expectation is observed.

OL+JETS [ATLAS/CMS]

PERIMENT

No significant deviation from the Standard Model expectation is observed.

University of Victoria

LEPTONS + JETS

Analysis targeting gluino mediated stop/sbottom production

- 10 "discovery" SRs make use of (b-)jet multiplicity, total jet mass (M), m , m and MET
- Further "exclusion" SRs binned in m and jet multiplicity
 - High MET, m , M → large mass splitting/boosted decays
 - Hard leading jet for very small mass splittings
 - Moderate to high jet multiplicity for Gbb/Gtt

Analysis targeting gluino mediated stop/sbottom production

- 10 "discovery" SRs make use of (b-)jet multiplicity, total jet mass (M_J), m_{eff}, m_T and MET
- Further "exclusion" SRs binned in m and jet multiplicity
 - High MET, m , M → large mass splitting/boosted decays
 - Hard leading jet for very small mass splittings

Dominant background from ttbar

- 1-lepton control regions used to normalise ttbar MC (invert m_r cut in 1L SRs)
- CRs are orthogonal → simultaneous fit to all regions for exclusion

 $\widetilde{g}\widetilde{g}$ production, $\widetilde{g} \rightarrow b\overline{b} + \widetilde{\chi}^{\vee}$, m(\widetilde{q}) >> m(\widetilde{g}) 2000 1800 (1600 1400 1400 ATLAS Preliminary Expected limit in 2015 √s=13 TeV, 36.1 fb Observed limit in 2015 Expected limit (±1 σ_{exp}) Multi-bin analysis Observed limit (±1 otheon All limits at 95% CL 2m.º 1200 1000 800 600 400 200 0 1400 1600 1800 1200

Squarks & Gluinos – 20th March 2017

University of Victoria

RPV ≥1L+MULTIJETS [ATLAS]

R-**P**arity **V**iolating SUSY search \rightarrow signatures with little or no MET and many (b-tagged) jets.

	Gluino decay via
RPV model with	light flavour
virtual stops \rightarrow	quarks →
sensitivity using b-	sensitivity with 0
tagged jets	b-tagged jets
p t \bar{t} u	$p \qquad q \qquad $

- ▶ Select events with ≥5 jets with p_{τ} >[40,60,80] GeV
- Events categorised according to N_{jet} and N_{bjet}
- Events with [5,6,7] jets and 0 b-tags further categorised:
 - ▶ ≥2 leptons within $81 < m_{\parallel}/GeV < 101$
 - positive charge leading lepton (Z-veto)
 - negative charge leading lepton (Z-veto)

RPV ≥1L+MULTIJETS [ATLAS]

- Select events with ≥ 5 jets with $p_{\tau} > [40,60,80]$ GeV
- Events categorised according to N_{jet} and N_{bjet}
- Events with [5,6,7] jets and 0 b-tags further categorised:
 - ▶ ≥2 leptons within $81 < m_{\parallel}/GeV < 101$
 - positive charge leading lepton (Z-veto)
 - negative charge leading lepton (Z-veto)

TTBAR

- dominant in low b-jet multiplicity regions.
 - normalise in each N_{jet} bin using scaling law that assumes almost constant probability for a single additional jet emission.
- dominant in high b-jet multiplicity regions
 - use N_{bjet} distribution in 5-jet region & parameterise evolution in N_{jet} using probability to get additional b-tags

Squarks & Gluinos – 20th March 2017

$RPV \ge 1L + MULTIJETS [ATLAS]$

Events

6

2

Results show good agreement with SM expectation.

Limits set on several simplified models:

- Best sensitivity from p_T>80 GeV regions for gluino production
- Best sensitivity from $p_T > 60$ GeV for top squark production (see Andreas's talk this afternoon).

12 jet regions with p_T>40 GeV Events 20 ATLAS Preliminary - Data ATLAS Preliminary Data tŦ tŦ $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ W + jets W + jets $15 \mid l + \ge 12 \text{ jets } (p_{\tau} > 40 \text{ GeV})$ $l + \ge 10$ jets (p₁ > 80 GeV) Z + jets Z + jets $m(\tilde{g}) = 2 \text{ TeV}, m(\tilde{\chi}_{1}^{0}) = 500 \text{ GeV}$ $m(\tilde{g}) = 2 \text{ TeV}, m(\tilde{\chi}^0) = 500 \text{ GeV}$ Multi-jet Multi-jet Others Others 10 Data/Model 1.7 9.0 9.0 9.0 1.5 000 1 0.5 W .5 | |/WOV 0.5.0 2 2 0 3 3 ≥ 4 ≥4 N_{b-tags} N_{b-tags} 2500 m(کِرْ) [GeV] $\widetilde{g} \to t \overline{t} \; \widetilde{\chi}^0_{_1} \to t \overline{t} \; u ds$ ATLAS Preliminary - Obs. limit (± 1 σ^{SUSY}_{theory}) \sqrt{s} = 13 TeV, 36.1 fb⁻¹ 2000 Exp. limit (± 1 σ_{exp}) All limits at 95% CL 1500 1000 500 1500 2000 m(g) [GeV]

University of Victoria

Squarks & Gluinos – 20th March 2017

10 jet regions with p_T>80 GeV

1L, ≥6 JETS [CMS]

18 SRs orthogonal in N_{jet}, MET, N_{bjet}, M_J and M_T

- b-tag selection sensitive to gluino mediated stop model
- Recluster R=0.4 jets into large R jets to target boosted bosons

W+JETS

TTBAR

- Negligible due to M_T cuts.
- Extrapolate M distribution from low M_{T} to high M_{T}
- Negligible in the SRs

20

1L, ≥6 JETS [CMS]

18 SRs orthogonal in $N_{\rm jet}$, MET, $N_{\rm bjet}$, $M_{\rm J}$ and $M_{\rm T}$

- b-tag selection sensitive to gluino mediated stop model
- Recluster R=0.4 jets into large R jets to target boosted bosons

W+JETS

TTBAR

Negligible due to M_T cuts.

 Extrapolate M_J distribution from low M_T to high M_T

MULTIJETS

• Negligible in the SRs

No significant excess with respect to the SM expectation

University of Victoria

SAME SIGN 2L [CMS]

Exploit low SM background expectation in same-sign final state


```
3 exclusive selections based on lepton p<sub>T</sub>
[10,10]<p<sub>T</sub>/GeV<[25,25]</li>
p<sub>T</sub>(1)>25 GeV, 10<p<sub>T</sub>(2)/GeV<25</li>
g<sub>T</sub>>[25,25] GeV
```

```
    Events categorised into exclusive bins using H , N , M , MET, lepton charge and N <sub>bjet</sub>
    51 search regions in total
```


SAME SIGN 2L [CMS]

Exploit low SM background expectation in same-sign final state

200F

Squarks & Gluinos – 20th March 2017

E_T^{miss} (GeV)

University

of Victoria

H_T (GeV)

SAME SIGN 2L [CMS]

Results for $p_T(1)>25$ GeV, 10< $p_T(2)$ /GeV<25 SRs

Results for p_T>[25,25] GeV SRs

SUMMARY

- The LHC was very productive during 2016, providing a large sample of 13 TeV data for the experiments.
- First SUSY searches to take advantage of increased dataset size at 13 TeV are those focusing on strong production of squarks and gluinos.
 - No excesses to get excited about in the newest results so far, pushing the existing limits on squarks and gluinos.
- Many more new results from 2016 still to come, and we're looking forward to taking a much larger 13 TeV dataset beginning this year.

S	tatus: March 2017		3 - 5	J /0			15			$\sqrt{s} = 7, 8, 13 \text{ Te}$	V
	Model	e, μ, τ, γ	Jets	E ^{miss} T	∫ <i>L dt</i> [fb	-1]	Mass limit	$\sqrt{s}=7,$	8 TeV \sqrt{s} = 13 TeV	Reference	
Inclusive Searches	$\begin{array}{l} MSUGRA/CMSSM \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \text{ (compressed)} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{1} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{1} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{1} \rightarrow q Q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell N LSP) \\ GGM (bino NLSP) \\ GGM (higgsino-bino NLSP) \\ GGM (higgsino NLSP) \\ GGM (higgsino NLSP) \\ GGM (higgsino NLSP) \\ Gravitino LSP \end{array}$	$\begin{array}{c} 0-3 \ e, \mu/1-2 \ \tau \\ 0 \\ mono-jet \\ 0 \\ 0 \\ 3 \ e, \mu \\ 2 \ e, \mu \ (SS) \\ 1-2 \ \tau + 0-1 \ e \\ 2 \ \gamma \\ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 <i>b</i> 2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 0-3 jets 0-2 jets - 1 <i>b</i> 2 jets 2 jets mono-jet	y Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 36.1 3.2 36.1 13.2 13.2 3.2 20.3 13.3 20.3 20.3	\tilde{q}, \tilde{g} \tilde{q} \tilde{q} \tilde{q} \tilde{g}	608 GeV 608 GeV 900 GeV 865 GeV	1.85 TeV 1.57 TeV 2.02 TeV 2.01 TeV 1.7 TeV 1.6 TeV 2.0 TeV 1.65 TeV 1.37 TeV 1.8 TeV	$\begin{split} & m(\tilde{q}) = m(\tilde{g}) \\ & m(\tilde{\chi}_{1}^{0}) < 200 \ \mathrm{GeV}, \ m(1^{\mathrm{st}} \ \mathrm{gen}, \tilde{q}) = m(2^{\mathrm{nd}} \ \mathrm{gen}, \tilde{q}) \\ & m(\tilde{q}) = m(\tilde{\chi}_{1}^{0}) < 5 \ \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) < 200 \ \mathrm{GeV}, \ m(\tilde{\chi}^{\pm}) = 0.5 (m(\tilde{\chi}_{1}^{0}) + m(\tilde{g})) \\ & m(\tilde{\chi}_{1}^{0}) < 200 \ \mathrm{GeV}, \ m(\tilde{\chi}^{\pm}) = 0.5 (m(\tilde{\chi}_{1}^{0}) + m(\tilde{g})) \\ & m(\tilde{\chi}_{1}^{0}) < 400 \ \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) < 500 \ \mathrm{GeV} \\ & c\tau(NLSP) < 0.1 \ mm \\ & m(\tilde{\chi}_{1}^{0}) < 500 \ \mathrm{GeV}, \ c\tau(NLSP) < 0.1 \ mm, \ \mu < 0 \\ & m(\tilde{\chi}_{1}^{0}) > 680 \ \mathrm{GeV}, \ c\tau(NLSP) < 0.1 \ mm, \ \mu > 0 \\ & m(NLSP) > 430 \ \mathrm{GeV} \\ & m(\tilde{G}) > 1.8 \times 10^{-4} \ eV, \ m(\tilde{g}) = m(\tilde{q}) = 1.5 \ TeV \end{split}$	1507.05525 ATLAS-CONF-2017-022 1604.07773 ATLAS-CONF-2017-022 ATLAS-CONF-2017-022 ATLAS-CONF-2016-037 ATLAS-CONF-2016-037 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518	

ATI AS Preliminary

BACKUP SLIDES

OL, 2-6 JETS [ATLAS]

RECURSIVE JIGSAW (RJR) ANALYSIS

Largest deviation ~2 sigma in SR1a.

RECURSIVE JIGSAW VARIABLES (I)

University

 $H_{1,1}^{\text{PP}}$ scale variable similar to MET.

 $H_{T 2,1}^{PP}$ transverse scale variable similar to effective mass, Meff, for squark pair-production signals with 2-jet final states.

- $H_{1,1}^{PP}/H_{2,1}^{PP}$ provides additional information in testing the balance of the information provided by the two scale cuts, where here the denominator is no longer solely transverse. This provides an excellent handle against unbalanced events where the large scale is dominated by a particular object pT or by high MET.
- $p_z^{\text{lab}}/(p_z^{\text{lab}} + H_{\text{T}2,1}^{\text{PP}})$ compares the z-momentum of the lab frame to the overall transverse scale variable considered. This variable tests for significant boost in the z direction.
- $p_{Tj2}^{PP}/H_{T2,1}^{PP}$ represents the fraction of the overall scale variable that is due to the second highest pT jet (in the PP frame) in the event.
- H^{PP}_{T 4,1} analogous to the transverse scale variable described above but more appropriate for four jet final states expected from gluino pair-production.
- $H_{1,1}^{\text{PP}}/H_{4,1}^{\text{PP}}$ analogous to the ratio described above for the squark search, but for gluino production.
- $H_{T 4,1}^{PP}/H_{4,1}^{PP}$ a measure of the fraction of momentum that lies in the transverse plain.
- min_i (p^{PP}_{Tj2i}/H^{PP}_{T 2,1i}) represents the fraction of the hemisphere's overall scale due to the second highest pT jet (in the PP frame) in each hemisphere. The minimum value between the two hemispheres is used, corresponding to the index i.

RECURSIVE JIGSAW VARIABLES (II)

Jniversit

- $\max_i (H_{1,0}^{P_i}/H_{2,0}^{P_i})$ testing the balance of solely the jet's momentum in a given hemisphere's approximate particle rest frame (Pi, index i indicating each hemisphere) allows an additional handle against a small but otherwise signal-like set of vector boson with associated jets background events.
- $R_{\rm ISR} \equiv \vec{p}_{\rm I}^{\rm CM} \cdot \hat{p}_{\rm TS}^{\rm CM} / p_{\rm TS}^{\rm CM}$ this is the fraction of the boost of the S system that is carried by it's invisible system I. As the PT of the ISR is increased it becomes more difficult for backgrounds to possess a large value in this ratio a feature exhibited by compressed signals.
- $M_{\rm TS}$ the transverse mass of the system
- $N_{\text{jet}}^{\text{V}}$ number of jets assigned to the visible system (V) and not associated with the ISR system.
- $\Delta \phi_{\text{ISR,I}}$ This is the opening angle between the ISR system and the invisible system in the lab frame.
- $|p_{TS}^{CM}|$ the magnitude of the vector-summed transverse momenta of all S-associated jets and MET evaluated in the CM frame.

Gtt REGIONS

	Variable	Signal	Control	Validation: 1L	Validation: 0L	Criteria common to	all Gtt 1-lep	pton regions: \geq	1 signal lepton, p	$T^{\text{jet}} > 30 \text{ G}$	eV, $N_{b-jet} \ge 3$
Criteria common	N ^{Signal Lepton}	= 0	= 1	= 1	= 0		Variable	Signal region	Control region	VR-m _T	VR- $m_{T,min}^{b-jets}$
to all regions of the	$p_{\mathrm{T}}^{\mathrm{jet}}$	> 30	> 30	> 30	> 30		N ^{jet}	≥ 5	== 5	≥ 5	> 5
same type	$\Delta \phi_{ m min}^{4j}$	> 0.4	-	_	> 0.4	Region A	m _T	> 150	< 150	> 150	< 150
	m _T	_	< 150	< 150	-	(Large mass splitting)	${ m m}_{ m T,min}^{b- m jets}$	> 120	_	_	> 120
	$m_{T,min}^{b-jets}$	> 60	_	> 60	_		$E_{\mathrm{T}}^{\mathrm{miss}}$	> 500	> 300	> 300	> 400
Region A	N^{b-tag}	≥ 3	≥ 3	≥ 3	≥ 3		m ^{incl}	> 2200	> 1700	> 1600	> 1400
(Large mass splitting)	$N^{\rm jet}$	≥ 7	≥ 6	≥ 6	≥ 6		$M_J^{\Sigma,4}$	> 200	> 150	< 200	> 200
	$E_{\mathrm{T}}^{\mathrm{miss}}$	> 350	> 275	> 300	> 250	Pagion B	N ^{jet}	≥ 6	== 6	≥ 6	> 6
	$m_{\mathrm{eff}}^{\mathrm{incl}}$	> 2600	> 1800	> 1800	> 2000	(Moderate mass	m _T	> 150	< 150	> 200	< 150
	M_J^{Σ}	> 300	> 300	< 300	< 300	splitting)	$m_{T.min}^{b-jets}$	> 160	_	_	> 140
	${ m m}_{ m T,min}^{b- m jets}$	> 120	_	> 80	-		$E_{\mathrm{T}}^{\mathrm{miss}}$	> 450	> 400	> 250	> 350
Region B	N^{b-tag}	≥ 3	≥ 3	≥ 3	≥ 3		$m_{\mathrm{eff}}^{\mathrm{incl}}$	> 1800	> 1500	> 1200	> 1200
(Moderate mass splitting)	$N^{\rm jet}$	≥ 7	≥ 6	≥ 6	≥ 6		$M_J^{\Sigma,4}$	> 200	> 100	< 100	> 150
	$E_{\mathrm{T}}^{\mathrm{miss}}$	> 500	> 400	> 450	> 450	Region C	N ^{jet}	≥ 7	== 7	≥ 7	> 7
	$m_{\mathrm{eff}}^{\mathrm{incl}}$	> 1800	> 1700	> 1400	> 1400	(Small mass	m _T	> 150	< 150	> 150	< 150
	M_J^{Σ}	> 200	> 200	< 200	< 200	splitting)	$m_{T,min}^{b-jets}$	> 160	_	< 160	> 160
	$m_{T,min}^{b-jets}$	> 120	_	> 80	_		$E_{\mathrm{T}}^{\mathrm{miss}}$	> 350	> 350	> 300	> 300
Region C (Small mass splitting)	N^{b-tag}	≥ 4	≥ 4	≥ 4	≥ 4		$m_{\rm eff}^{\rm incl}$	> 1000	> 1000	> 1000	> 1000
(on an and op a strong)	$N^{\rm jet}$	≥ 8	≥ 7	≥ 7	≥ 7		$M_J^{\Sigma,4}$	_	< 200	_	-
	$E_{\mathrm{T}}^{\mathrm{miss}}$	> 250	> 250	> 225	> 250						
	$m_{\mathrm{eff}}^{\mathrm{incl}}$	> 1000	> 1000	> 850	> 1000						
	M_J^Σ	> 100	> 100	< 100	< 100						

Gbb REGIONS

	Variable	Signal region	Control region	Validation region
	NSignal Lepton	0	= 1	0
Criteria common	$\Delta \phi_{ m min}^{4j}$	> 0.4	-	> 0.4
same type	m _T	-	< 150	-
	$p_{\mathrm{T}}^{\mathrm{jet}}$	> 30	> 30	> 30
	N _{jet}	≥ 4	≥ 4	≥ 4
	N _{b-jet}	≥ 3	≥ 3	≥ 3
Region A	$E_{\mathrm{T}}^{\mathrm{miss}}$	> 400	> 400	> 350
(Large mass splitting)	$m_{ m eff}$	> 2800	> 2500	< 2800 & > 1900
	N _{b-jet}	≥ 4	≥ 4	≥ 4
Region B	$E_{ m T}^{ m miss}$	> 450	> 375	< 450 & > 350
(Small mass splitting)	${ m m}_{ m T,min}^{b- m jets}$	> 155	-	> 125
	N _{b-jet}	≥ 3	≥ 3	≥ 3
Region C	$E_{\mathrm{T}}^{\mathrm{miss}}$	> 600	> 600	< 600& > 225
splitting)	${ m m}_{ m T,min}^{b- m jets}$	> 100	-	> 100
	$p_T^{j,1}$	> 400	> 400	> 400
	$j1 \neq b$	(y)	(y)	(y)
	$\Delta \phi(j1, E_{\mathrm{T}}^{\mathrm{miss}})$	> 2.5	> 2.5	> 2.5
	N _{b-jet}	≥ 4	≥ 4	≥ 4
Region D	$E_{ m T}^{ m miss}$	> 450	> 300	< 450& > 250
(Moderate mass splitting)	${ m m}_{ m T,min}^{b- m jets}$	> 90	-	> 100
	$m_{\rm eff}$	> 1600	> 1600	> 1600 & > 1900

Analysis targeting gluino mediated stop/sbottom production

- 10 "discovery" SRs make use of (b-)jet multiplicity, total jet mass (M_J), m_{eff}, m_T and MET
- Further "exclusion" SRs binned in m and jet multiplicity
 - High MET, m , M → large mass splitting/boosted decays
 - Hard leading jet for very small mass splittings

Dominant background from ttbar

- 1-lepton control regions used to normalise ttbar MC (invert m₁ cut in 1L SRs)
- CRs are orthogonal → simultaneous fit to all regions for exclusion

University of Victoria

Results consistent with the SM expectation in "discovery" SRs

Signal channel	p_0 (Z)	$\sigma_{ m vis}[m fb]$	$S_{ m obs}^{95}$	S_{exp}^{95}
SR-Gtt-1L-A	0.50 (0.00)	0.08	3.0	$\begin{array}{r} 3.1^{+0.9}_{-0.1} \\ 3.6^{+1.2}_{-0.5} \\ 4.8^{+1.8}_{-1.0} \end{array}$
SR-Gtt-1L-B	0.34 (0.41)	0.11	3.9	
SR-Gtt-1L-C	0.50 (0.00)	0.14	4.9	
SR-Gtt-0L-A	0.32 (0.47)	0.13	4.8	$\begin{array}{r} 4.1^{+1.7}_{-0.7} \\ 5.9^{+2.2}_{-1.4} \\ 20.0^{+0.0}_{-2.1} \end{array}$
SR-Gtt-0L-B	0.25 (0.68)	0.21	7.4	
SR-Gtt-0L-C	0.50 (0.00)	0.55	20.0	
SR-Gbb-A	0.50 (0.00)	0.13	4.6	$\begin{array}{r} 4.5^{+1.7}_{-0.9} \\ 5.0^{+2.1}_{-1.1} \\ 6.9^{+2.8}_{-1.5} \\ 4.4^{+2.0}_{-1.1} \end{array}$
SR-Gbb-B	0.50 (0.00)	0.13	4.5	
SR-Gbb-C	0.50 (0.00)	0.18	6.6	
SR-Gbb-D	0.50 (0.00)	0.09	3.1	

Model independent upper limits on visible cross-section set by considering each SR individually.

CMS SUMMARY PLOTS

Squarks & Gluinos – 20th March 2017

34

DISCRIMINATING VARIABLES

$$m_{\text{eff}}^{\text{incl}} = \sum_{i \le n} p_{\text{T}}^{j_i} + \sum_{j \le m} p_{\text{T}}^{\ell_j} + E_{\text{T}}^{\text{miss}}$$
$$m_{\text{T}} = \sqrt{2p_{\text{T}}E_{\text{T}}^{\text{miss}}(1 - \cos\Delta\phi(E_{\text{T}}^{\text{miss}}, \text{lepton}))}$$

$$m_{T,\min}^{b-jets} = \min_{i \le 3} \sqrt{(E_T^{miss} + p_T^{j_i})^2 - (E_T^{miss} + p_x^{j_i})^2 - (E_T^{miss} + p_y^{j_i})^2}$$

 $M_J^{\Sigma,4} = \sum_{i \le 4} m_{J,i}$ Boosted top quarks in signal yield high pT, massive jets (~R=0.8), the MJ variable sensitive to this large-angle clustering of constituents.

