Search and prospects for HH production

Luca Cadamuro

on behalf of the ATLAS and CMS collaborations

LLR - École polytechnique

52nd Rencontres de Moriond, EW session March 19th, 2017 – La Thuile

Non-resonant HH production

$$g$$
 0000 $-- H$

$$\sigma_{gg \to HH} = 33.49^{+4.3}_{-6.0} \text{ (scale)} \pm 2.1 \text{ (PDF)} \pm 2.3 \text{ } (\alpha_s) \text{ fb}$$

[13 TeV, NNLO + NNLL with top mass effects, HXSWG, arXiv:1610.07922]

- σ_{HH}: main way to extract Higgs trilinear coupling λ_{HHH}
 - direct information on the shape of the scalar Higgs potential
 - dominated by gg fusion, other production modes out of reach with current data
- Destructive interference of the two diagrams → small σ_{HH}
- Effective lagrangian used to model BSM effects: anomalous λ_{HHH} and y_t couplings and three new contact interactions
 - large modification of σ_{HH}

Resonant HH production

- Many different theories predict resonant Higgs pair production X→HH
 - just a few examples quoted in the scheme!
- Very different theoretical motivation, but similar experimental signature
- Full coverage of a broad m_X range is crucial to maximize the sensitivity to different models
 - no "golden" channel, multiple analysis techniques

Resonant HH production would be evidence for a new state, not predicted by the SM

Which final state?

- Phenomenologically rich set of final states
- One H→bb or H→WW decay required to keep BR high enough
 - common techniques across analyses (e.g. b-tagging) + channel-specific challenges
- Complementarity of the channels
 - similar sensitivity to non-resonant production
 - different coverage in m_X

Searches at 8 TeV

Analysis	$\gamma\gamma bb$	$\gamma\gamma WW^*$	$bb\tau\tau$	bbbb	Combined	1
	Upper limi	t on the cross s	ection relativ	ve to the S	M prediction	1
Expected	100	680	130	63	48	
Observed	220	1150	160	63	70	

- Four channels explored and combined in ATLAS
 - bbγγ and bbττ with similar sensitivity at low mass, bbbb dominant at high mass
- $bb\gamma\gamma + bb\tau\tau + bbbb$ explored in CMS but not combined yet
 - exclude 58 X SM (bb $\tau\tau$),74 X SM (bb $\gamma\gamma$)

HH -> bbbb

Search and prospects for HH production

- High BR, large contamination from multijet background
 - estimated from data
- Two event topologies explored
 - resolved: four separate jets
 - boosted: jets from H→bb decay overlap, use jet with radius 0.8/1.0 + substructure techniques
- Crucially relies on b-tagging
 - b-tag at trigger level for resolved analyses
 - double b-tagging on 0.8 radius jet based on multivariate method for CMS boosted analysis
- Invariant masses of selected jets used to search for a signal

HH → bbbb

ATLAS:

- 13.3 fb⁻¹ analyzed
- non-resonant search excludes 29 X SM

CMS

- 2.3/2.7 fb⁻¹ analyzed
- non resonant search excludes 324 x SM
- search for both spin-0 and spin-2 resonances

HH -> bbWW

- WW→ $\ell v_{\ell} \ell v_{\ell} (\ell = e, \mu) \Longrightarrow$ bbee, bbµµ, bbeµ
- Dominant background: tt (same final state)
 - constrained from mbb sideband
- Exploit event kinematics to select signal using BDT
 - used as final discriminant
- Updated results on 35.9 fb⁻¹ are coming for Moriond QCD!

Events / 0.04

new results!

- 3 $\tau\tau$ final states: $\mu\tau_h$, $e\tau_h$, $\tau_h\tau_h$
 - require the presence of μ, e, τ_h candidates and 2 jets in the event
 - $m_{\tau\tau}$ (from likelihood technique) and m_{bb} must be compatible with $m_H = 125$ GeV
- Main backgrounds:
 - tt: from MC simulation
 - □ Drell-Yan : MC simulation corrected in data Z→µµ sideband
 - multijet : from data sideband
- Categorization on the selected H→bb jet candidates
 - 2b-tagged jet category
 - 1b-tagged jet + 1 untagged jet category
 - "boosted" category with a R=0.8 jet to improve reconstruction H decays at high m_X

$HH \rightarrow bb\tau\tau$

new results!

- tt background rejected with BDT method in $\mu \tau_h$ and $e \tau_h$ final states
 - based on angular separation of leptons and reconstructed
 H candidates and m_T
- Fitted observables:
 - resonant search: kinematic reconstruction of HH decay
 - non-resonant search:
 "stransverse mass" M_{T2} that has optimal separation of signal from background

$$m_{T2} \equiv \min_{\boldsymbol{p}_{T1} + \boldsymbol{p}_{T2} = \boldsymbol{p}_{T}^{\tau\tau}} \{ \max[m_{T}(m_{b1}, \boldsymbol{p}_{T}^{b1}, m_{vis}^{\tau1}, \boldsymbol{p}_{T1}), m_{T}(m_{b2}, \boldsymbol{p}_{T}^{b2}, m_{vis}^{\tau2}, \boldsymbol{p}_{T2})] \}$$

$HH \rightarrow bb\tau\tau$

new results!

- Non-resonant search excludes 28 times the SM

 - sensitive to the sign of y_t
- Resonant production tested up to m_X = 900 GeV, and interpreted in the hMSSM

$HH \rightarrow bb\gamma\gamma / WW\gamma\gamma$

- Rare but very clean final states
 - large signal acceptance
 - main background
 from continuum jjγγ
 (+ℓ) production
 estimated from data
 - exploit excellent resolution on m_{γγ} to look for a signal

- Two photons and two jets in the event for $bb\gamma\gamma$
- One additional lepton for $WW\gamma\gamma \rightarrow jj\ell v_{\ell}\gamma\gamma$
- Dedicated methods to improve mbb resolution
- Additional categories with 2 and 1 b-tagged jets for CMS bbγγ

$HH \rightarrow bb\gamma\gamma / WW\gamma\gamma$

Obs (exp) limit on non-resonant production				
	bbγγ	$WW\gamma\gamma$		
ATLAS EXPERIMENT	117 (161) X SM	747 (386) X SM		
CMS	91 (90) X SM	-		

Results overview

	Obs. (exp.) 95% C.L. limit on $\sigma/\sigma_{\text{SM}}$		
Chan.	ATLAS EXPERIMENT	CMS	
bbbb	29 (38)	342 (308)	
bbWW	-	410 (227)	
bb $ au au$	-	28 (25)	
bbγγ	117 (161)	91 (90)	
$WW\gamma\gamma$	747 (386)	-	
2.3-3.2 fb	1 13.3 fb ⁻¹	35.9 fb ⁻¹	

- ■: Test of anomalous HH couplings
- Complementarity in different mass ranges
 - much to gain from a combination!

Future prospects

- Measurement of σ_{HH} and determination of λ_{HHH} are one of the main points of the physics programme at the HL-LHC (3 ab⁻¹ of data)
- Two alternative approaches to estimate the sensitivity to HH production

parametric simulation of upgraded detector response

 $bb\gamma\gamma$, $bb\tau\tau$ and bbbb studied

Best significance is 1.05σ from $bb\gamma\gamma$

 extrapolation of results from 13 TeV, 2.3/2.7 fb⁻¹ to HL-LHC (conservative: current results not optimal for high luminosity)

Significance $bb\gamma\gamma$ 1.6σ

ob au au	0	.390

bbVV 0.45σ

bbbb 0.39σ

Combination of final states and of ATLAS and CMS will be crucial to observe HH production

Conclusions

- What can we learn from HH production?
 - search for new physics via resonant production
 - probe the 5-dimensional structure of the BSM effective Lagrangian
 - access the shape of the scalar Higgs field via λ_{HHH}
- Where do we stand?
 - several HH final states explored at 13 TeV by ATLAS and CMS
 - no sign of (B)SM HH production yet: best limit is 28 x SM
- What's next?
 - more updated results with full 2016 luminosity
 - new HH final states and a combination are coming soon
 - projections show that in the long term (HL-LHC) we can have some sensitivity to SM HH, but analyses are evolving quickly, and we expect to do better!

HH is (almost) at reach!

Search and prospects for HH production

Additional material

Effective Lagrangian parametrization

JHEP04 (2015) 167 , LHCHXSWG-2016-001

- Effective Lagrangian obtained by adding dim-6 operators to the SM Lagrangian
- Results in a modification of the SM λ_{HHH} and y_t couplings and introduces three new contact interactions
 - changing these 5 couplings affect σ_{HH} and the HH kinematics
- Analyses are exploring the 5-dimensional space of these couplings
 - □ a parametrization of σ_{HH}(λ_{HHH}, y_t, c₂, c_g, c_{2g}) is used

- Limit set as a function of the ratio k_{λ}/k_{t} with $k_{\lambda} = \lambda_{HHH}/\lambda_{HHH}^{SM}$ and $k_{t} = y_{t}/y_{t}^{SM}$
- The shape of the signal depends only on the ratio of the couplings for the gg fusion mechanisms
 - under the assumption that the other BSM couplings c₂, c_g, c_{2g} are zero

HH → bbbb

- 13.3 fb⁻¹ (ATLAS) and 2.3 fb⁻¹ (CMS) analyzed
- Different set of triggers used: require 1 or 2 b-tagged jets (ATLAS) or 3 b-tagged jets (CMS)
- Different definition of control regions: both use a mass sideband, but ATLAS also inverts the b-tag requirement

Boosted HH → bbbb

- Require two jets with cone 1.0 (ATLAS) / 0.8 (CMS)
 - □ trigger: one R=1.0 jet (ATLAS), jets+ H_T sums (CMS)
- b-tag criteria applied
 - ATLAS: categories with 2/3/4 b-tagged track-jets matched
 - CMS: two separate methods
 - 1) b-tag on sub-jets + 3-4 tag categorization
 - 2) double-b tagging MVA algorithm on R=0.8 jet

- ATLAS: multijet+tt yield simultaneous fit to jet-mass distribution in sideband.
 Multijet shape from data.
- CMS: two separate methods
 - 1) simultaneous functional fit of signal and bkg to data
 - 2) interpolation of b-untagged/b-tagged event ratio vs. m_Jlead into the signal region

$HH \rightarrow bb\gamma\gamma$

Some details on the selections and techniques used in the two analyses

- $2 \gamma \text{ of } E_T/m_{\gamma\gamma} > 0.35 (0.25)$
- 2 jets of $p_T > 55$ (35) GeV, both b-tagged
- signal selection effciency is 5-8% (resonant with m_X < 400 GeV) and 10% (non-resonant)
- bb 4-momentum rescaled by m_H/m_{bb}
- fit over $m_{\gamma\gamma}$ for non-resonant search, counting experiment in $m_{\gamma\gamma bb}$ window in resonant search

- 2 γ of E_T > 30 (20) GeV and E_T/m_{$\gamma\gamma$} > 0.33 (0.25)
- 2 jets of p_T > 25 GeV, 1 and 2 b-tag categories
- signal selection efficiency is ~20% for m_x < 400 GeV
- multivariate regression method to estimate m_{bb}
- improved 4-body mass resolution using $m_X = m_{ij\gamma\gamma} m_{ij} + 125 \text{ GeV}$
- 2D fit over $(m_{\gamma\gamma}, m_{bb})$ in a window around $m_{bb\gamma\gamma}$ (resonant search) and for $m_{bb\gamma\gamma} > 350$ GeV (non-resonant search)