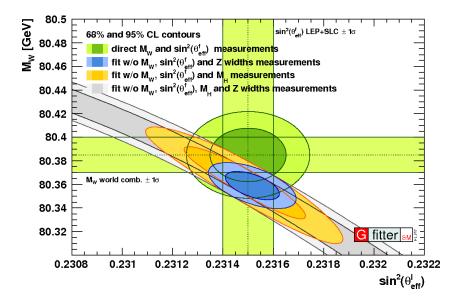


Electroweak precision measurements with Z and W bosons at the LHC

Moriond EW Session, 2017

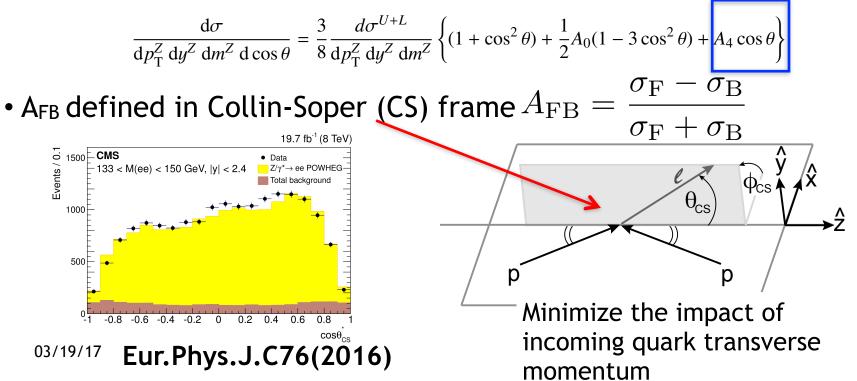
Aram Apyan On behalf of ATLAS, CMS, and LHCb collaborations


Overview of the Electroweak Sector

 $\sin^2 \theta_{\rm W} = 1 - \frac{m_{\rm W}^2}{m_{\rm Z}^2}$

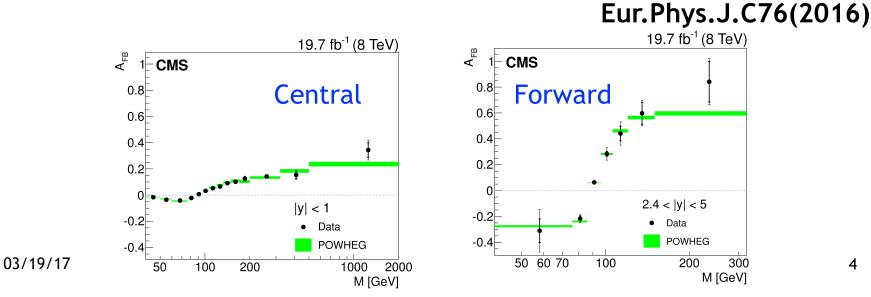
- Electroweak (EW) precision observables
 - $\alpha_{\rm em}, {\rm G_F}, m_{\rm W}, m_{\rm Z}, \sin^2 \theta_{\rm W}, m_h$
- Not independent but related through Standard Model (SM)

 $m_{\rm W}^2 \sin^2 \theta_{\rm W} = \frac{\pi \alpha}{\sqrt{2} G_{\rm F}}$

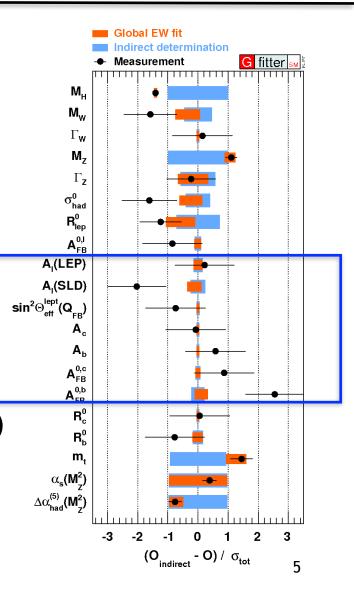

- Precision EW measurements
 - Testing the consistency of the SM
 - Probing beyond SM contributions
- Focus on $\sin^2 heta_{
 m W}$ in this talk
 - Non-abelian Gauge structure discussed in the next talk
 - W mass discussed tomorrow morning

(Tree level)

Forward-backward Asymmetry

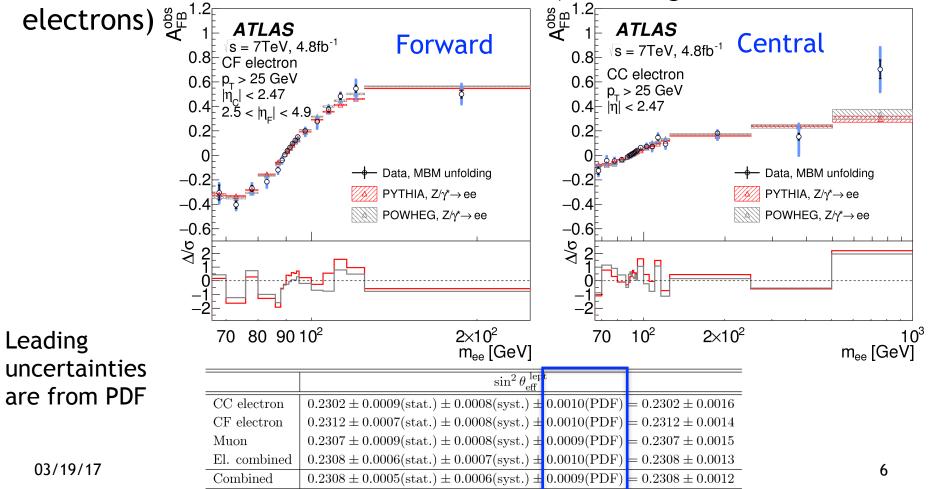

- Neutral current process: $q\bar{q} \rightarrow Z/\gamma^* \rightarrow \ell^+ \ell^-$
- Z boson couplings are different for left and right-handed fermions
- \bullet Forward-backward asymmetry (A_{FB}) in the polar angle distribution of negatively charged lepton in the rest frame of di-lepton system
 - Defined with respect to the incoming quark

3


Forward-backward Asymmetry 2

- A_{FB} measured as function of di-lepton mass in muon (LHCb) and electron/ muon final states (ATLAS/CMS)
- Proton-proton collisions: where is the quark?
 - Direction of longitudinal boost of the di-lepton system in the laboratory frame chosen as the positive axis
 - Quark direction is not always along the positive axis
 - Dilution of AFR
 - Dilution is smaller at large absolute rapidities of di-lepton system

Effective weak mixing angle


- A_{FB} is sensitive to $\sin^2 heta_{
 m W}$ near Z peak
 - Product of vector and axial couplings
- Electroweak corrections:
 - Tree level couplings are replaced by
 - effective couplings $\sin^2 \theta_{\text{eff}}^{\text{f}} = \kappa_Z^{\text{f}} \sin^2 \theta_{\text{W}}$ $g_{\text{A}}^{\text{f}} = \sqrt{\rho_{\text{f}}} t_{3L}^{\text{f}}$ $g_{\text{V}}^{\text{f}} = \sqrt{\rho_{\text{f}}} (t_{3L}^{\text{f}} - 2Q_{\text{f}} \kappa_{\text{f}} \sin^2 \theta_{\text{W}})$
- Template fit to extract the $\sin^2 \theta_{\rm eff}^\ell$
- Large discrepancy (~3 standard deviations) between the two most precise LEP/SLD measurements

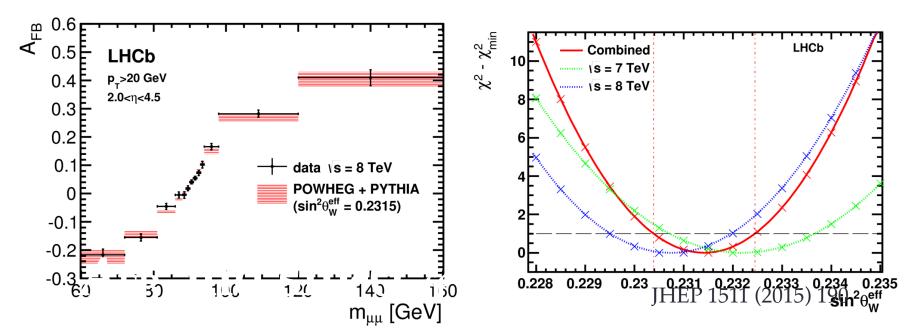
A_{fb} and $\sin^2 \theta_{eff}^{\ell}$

JHEP 1509 (2015) 049

- ATLAS 7 TeV measurement
- Muon and electron final states are used (including forward

A_{fb} and $\sin^2 \theta_{\text{eff}}^{\ell}$

JHEP 1509 (2015) 049

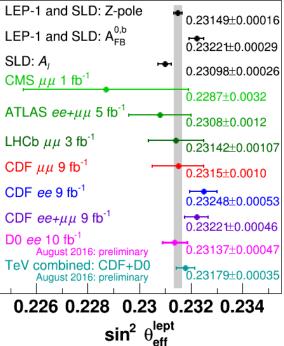

- ATLAS 7 TeV measurement
- Muon and electron final states are used (including forward

electrons)	$\mathbf{X}_{\text{opt}}^{\text{M}} = \mathbf{ATLAS}$		Forward	ATLAS 0.8 S = 7TeV, 4.8fb ⁻¹ Central				
			CC electrons	CF electrons	Muons	Combined	Ŷ	
	Uncertainty source		$[10^{-4}]$	$[10^{-4}]$	$[10^{-4}]$	$[10^{-4}]$	××××××××××××××××××××××××××××××××××××××	
	PDF		10	10	9	9	9	
	MC statistics		5	2	5	2	1 unfolding /γ*→ee Z/γ*→ee	
	Electron energy scale		4	6	—	3		
	Electron energy resolution		4	5	—	2		
	Muon energy scale		—	_	5	2		
	Higher-order corrections		3	1	3	2		
Other sources			1	1	2	2		
			2×10 ²					
Leading uncertainties are from PDF	70 80 90	70 80 90 10 ²		90 1 V]	10 ² 2×10 ²		10 ³ m _{ee} [GeV]	
				$\sin^2 heta_{ m eff}^{ m left}$				
	CC electron			$(st.) \pm 0.0010(PDF) =$				
			$\begin{array}{l} 07(\text{stat.}) \pm 0.0008(\text{syst.}) \pm 0.0010(\text{PDF}\\ 09(\text{stat.}) \pm 0.0008(\text{syst.}) \pm 0.0009(\text{PDF}\\ \end{array}$					
					$(PDF) = 0.2307 \pm 0.0013$ $(PDF) = 0.2308 \pm 0.0013$			
03/19/17	Combined				$\frac{(10000 \pm 0.0010)}{(10000 \pm 0.0010)} = 0.2308 \pm 0.0012$		7	

A_{fb} and $\sin^2 \theta_{\text{eff}}^{\ell}$

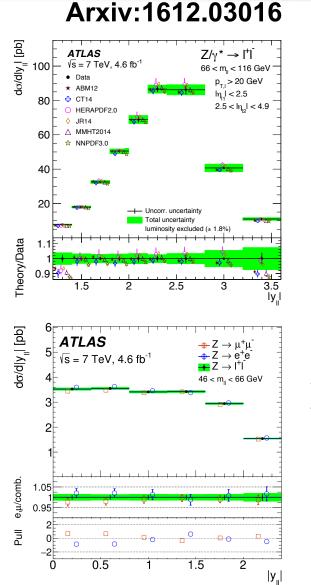
JHEP 1511 (2015) 190

- LHCb 7 and 8 TeV measurements using di-muon
- Assignment of forward and backward decays is correct 90% of the time

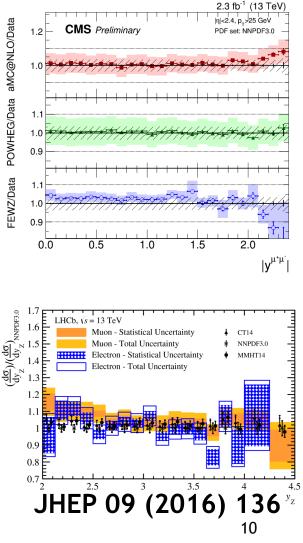


• Smaller theoretical uncertainty due to forward di-muon events

$$\sin^2 \theta_{\rm W}^{\rm eff} = 0.23142 \pm 0.00073_{\rm (stat)} \pm 0.00052 \pm 0.00056_{\rm (exp)} \pm 0.00056_{\rm (theory+pdf)}$$

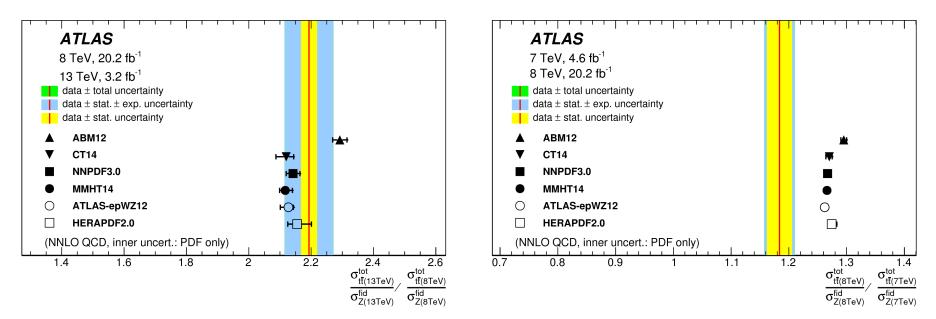

A_{fb} and $\sin^2 \theta_{\text{off}}^{\ell}$

- Hadron collider measurements are becoming more precise
 - LEP and SLD measurements are still most precise measurements
- Dominating PDF uncertainties at the LHC
 - PDF uncertainties will be smaller if the measurements were repeated with recent PDFs
- Future improvements? Profiling PDF uncertainties in a combined fit to extract $\sin^2 \theta_{\text{eff}}^{\ell}$ and constrain PDFs

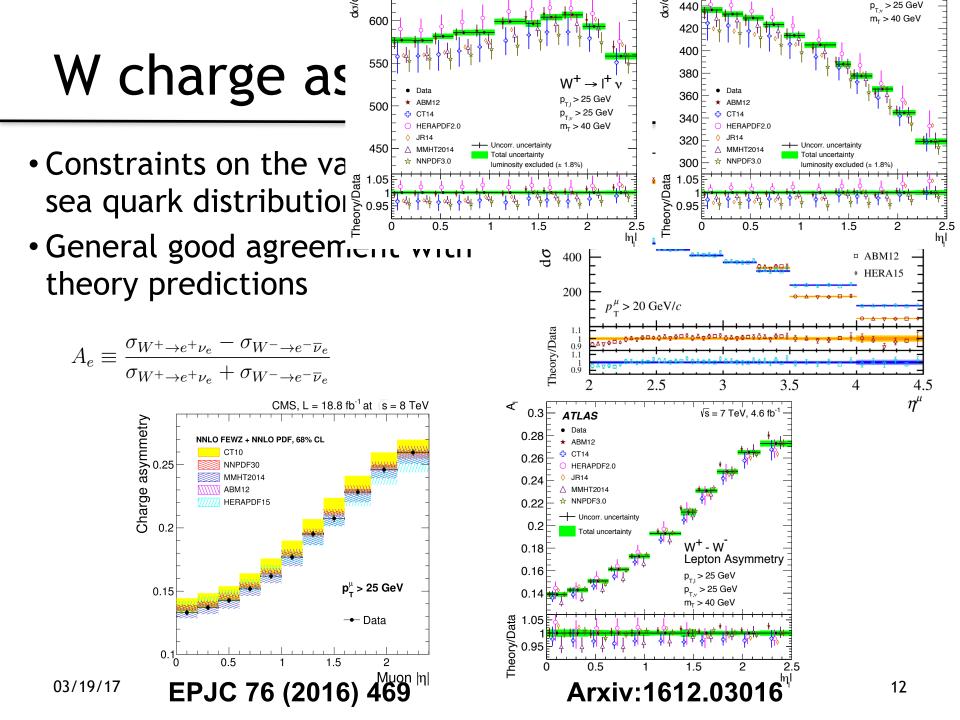


PDF related measurements

- Single boson production cross section measurements constrain the PDFs
 - Differential W/Z measurements are important (including the forward region)
- Measurements at 7, 8, and 13 TeV are performed

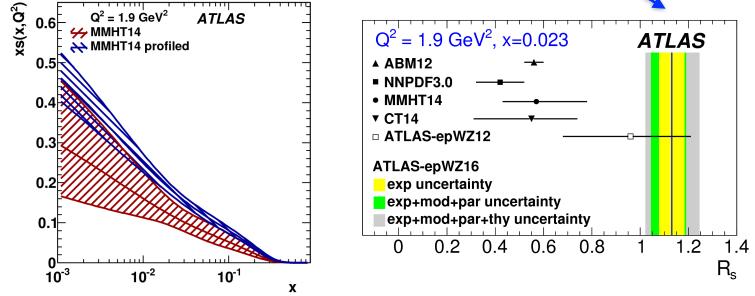


CMS-PAS-SMP-15-011



Cross section ratios

- Measurements of top-quark pair to Z boson cross section ratios
 - Center of mass energies of 7, 8, and 13 TeV
- Constrains on PDFs, strong coupling constant, and top-quark mass



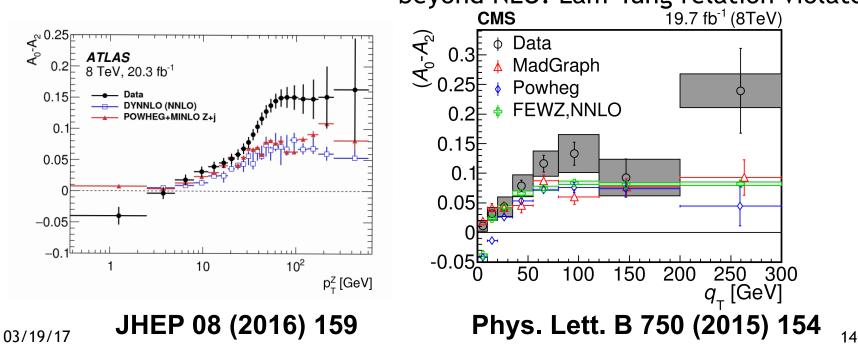
 Significant power to constrain the gluon distribution functions near x of 0.1

Impact on PDFs

- Data can be interpreted in combination with HERA data within perturbative QCD
- For example: more sensitivity to the flavor composition of sea quark
 - Ratio of strange to light quark sea densities
 - Close to unity in the sensitivity range of data

• Heavy flavor PDF can also be tested via V+c-jet measurements

Angular coefficients

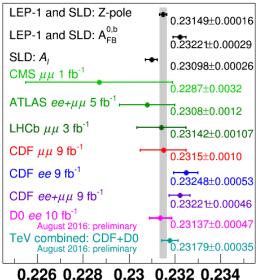

- Accurate modeling of QCD effects is crucial to perform the EW precision measurements
- Factorizing the Drell-Yan production cross section from the decay kinematics

 $\frac{d\theta}{dp_{\rm T}^Z dy^Z dm^Z d\cos\theta d\phi} = \frac{3}{16\pi} \frac{d\theta}{dp_{\rm T}^Z dy^Z dm^Z} \qquad \text{CS frame} \\ \left\{ (1 + \cos^2 \theta) + \frac{1}{2} A_0 (1 - 3\cos^2 \theta) + A_1 \sin 2\theta \cos\phi + \frac{1}{2} A_2 \sin^2 \theta \cos 2\phi + A_3 \sin \theta \cos\phi + A_4 \cos\theta \right\}$

 $+A_5 \sin^2 \theta \sin 2\phi + A_6 \sin 2\theta \sin \phi + A_7 \sin \theta \sin \phi \Big\}$

A₀-A₂ is non-zero for QCD calculations beyond NLO: Lam-Tung relation violated

 $\mathrm{d}\sigma^{U+L}$


 $d\sigma$

Summary

- Electroweak precision measurements at the LHC
- Precise measurements of the effective weak mixing angle
 - PDF and statistical uncertainties dominate
 - Experimental uncertainties are under control
- PDF uncertainties will improve with more data
 - Precise measurements of W/Z production cross sections and their ratios available
- Many more results to come with

new data

 $\sin^2 \theta_{off}^{lep}$