LATEST RESULTS FROM THE PIERRE AUGER OBSERVATORY

52nd Rencontres de Moriond EW 2017 La Thuile, 24-03-2017

INTERNATIONAL JOURNAL OF HIGH-ENERGY PHYSICS CERNCOURIER

VOLUME 56 NUMBER 5 JUNE 2016

Cosmic collisions

Roberta Colalillo for the Pierre Auger Collaboration, Università degli Studi di Napoli "Federico II" and INFN, Sezione di Napoli

The Pierre Auger Observatory

- Largest cosmic ray detector built so far;
- Located in the southern hemisphere, near the town of Malargue, Mendoza province, Argentina;
- International collaboration of more than 450 scientists from 16 countries.

The Pierre Auger Observatory

<u>SD detector:</u> 1660 Water Cherenkov detectors, covering 3000 km² and arranged in a triangular grid with 1500 m spacing.

FD detector: 24 telescopes, 6 for each sites, arranged to overlook the area covered by the SD. The site is located in the Argentinian pampa, at ~ 1400 m above sea level (875 g/cm^2).

- Large Aperture
 - (about 7000 km² sr)
- Hybrid Detection Technique

Goals of the Experiment:

- Energy Spectrum
- Mass Composition
- Arrival Directions Anisotropy

An Auger Event

- SD: lateral distribution of shower particles at ground; large statistics, fully efficient at 3 EeV.
- FD: longitudinal development of the shower; E >= 10¹⁸ eV, calorimetric measurement of the energy, duty cycle ~ 15%.
- **Energy resolution** $\rightarrow \sim 15\%$.
- Angular resolution \rightarrow 1°-2°(SD) < 1° (hybrid).

Auger Enhancements

- Three additional telescopes at Coihueco site;
- Pointing above FOV of the standard SD (FOV 30°-60°);
- Lowering the energy threshold to 10¹⁷ eV.

AMIGA (Auger Muon and Infill for the Ground Array)

INFILL:

61 WCD in half distance (750 m); Covering 23.5 km²; Extends energy range of SD to 3×10^{17} Ev.

UNDERGROUND MUON COUNTERS:

30 m² scintillator, 64 channel multianode PMT; Buried 2.25 m under ground level.

Auger Energy Specthum

Correlations between the SD energy estimators and the FD energy:

- Infill array;
- Full array with the standard 1.5 km spacing;
- Very inclined showers (60°-80°).

Auger Energy Spectrum

	SD-1500 m		SD-750 m	Hybrid	
	vertical	inclined			
Data-taking period	01/2004-12/2014	01/2004-12/2013	08/2008-12/2014	11/2005-12/2013	
Exposure [km ² sr yr]	42500 ± 1300	10900 ± 300	$150{\pm}5$	$1500{\pm}20$ at 10^{19} eV	
Zenith angle [deg]	0-60	60-80	0-55	0-60	
Threshold energy	$3 \times 10^{18} \text{ eV}$	$4 \times 10^{18} \text{ eV}$	$3 \times 10^{17} \text{ eV}$	10^{18} eV	
Number of events	102901	15614	61130	9346	
Number of hybrid events	1731	255	469		
Energy scale (A)	(0.1871 ± 0.004) EeV	(5.71±0.09) EeV	$(12.87 \pm 0.63) \text{ PeV}$		
Energy scale (B)	1.023 ± 0.006	$1.01{\pm}0.02$	$1.013 {\pm} 0.013$		
Energy resolution [%]	$15.3 {\pm} 0.4$	19 ± 1	13 ± 1		

Combined Spectrum

$$J(E) = J_0 \left(\frac{E}{E_{\text{ankle}}}\right)^{-\gamma_1} \quad \mathsf{E} < \mathsf{E}_{\text{ankle}}$$

$$J(E) = J_0 \left(\frac{E}{E_{\text{ankle}}}\right)^{-\gamma_2} \left[1 + \left(\frac{E_{\text{ankle}}}{E_{\text{s}}}\right)^{\Delta\gamma}\right] \left[1 + \left(\frac{E}{E_{\text{s}}}\right)^{\Delta\gamma}\right]^{-1}$$

$J_0 [{\rm eV}^{-1}{\rm km}^{-2}{\rm sr}^{-1}{\rm yr}^{-1}]$	E_{ankle} [EeV]	$E_{\rm s}$ [EeV]	γ_1	γ_2	$\Delta\gamma$
$(3.30 \pm 0.15 \pm 0.20) \times 10^{-19}$	$4.82 \pm 0.07 \pm 0.8$	$42.09 \pm 1.7 \pm 7.61$	$3.29 \pm 0.02 \pm 0.05$	$2.60 \pm 0.02 \pm 0.1$	$3.14 \pm 0.2 \pm 0.4$

Auger Energy Spectrum

	SD-1500 m		SD-750 m	Hybrid
	vertical	inclined	-	
Data-taking period Exposure [km ² sr yr] Zenith angle [deg] Threshold energy Number of events	01/2004-12/2014 42500 \pm 1300 0-60 3×10^{18} eV 102901	01/2004–12/2013 10900±300 60-80 4×10 ¹⁸ eV 15614	08/2008-12/2014 150 ± 5 0-55 3×10^{17} eV 61130	11/2005–12/2013 1500±20 at 10 ¹⁹ eV 0-60 10 ¹⁸ eV 9346
Number of hybrid events Energy scale (A) Energy scale (B) Energy resolution [%]	$ \begin{array}{c} 1731 \\ (0.1871 \pm 0.004) \text{ EeV} \\ 1.023 \pm 0.006 \\ 15.3 \end{array} $	255 (5.71±0.09) EeV 1.01±0.02	469 (12.87± 0.63) PeV 1.013±0.013	
$^{10}(E^3 J/(m^2 s^1 sr^1 eV^2))$ $^{10}(2327)$ $^{10}(E^3 J/(m^2 s^1 sr^1 eV^2))$ $^{10}(13210)$ 2629 263	energie	s was obse any doul ance of mo /hat is the c	rved without bt re than 20 σ) cause? $f(E) = J_0 \left(\frac{E}{E_{ankle}}\right)^{-\gamma_2} \left[1 - \frac{1}{2}\right]$	$E < E_{ankle}$ $\left[\left(\frac{E_{ankle}}{E} \right)^{\Delta \gamma} \right] \left[\left(\frac{E}{1 + \left(\frac{E}{E} \right)^{\Delta \gamma}} \right]^{-1} \right]$
22.5 — Auger (I 17.5 18	CRC 2015 preliminary) 18.5 19 19.5 log ₁₀ (E/eV)	20 20.5	$\langle f \rangle = \langle E_{ankle} \rangle$	$\left(\begin{array}{c} E_{s} \end{array} \right) \left[\begin{array}{c} C \\ C $
$J_0 [{\rm eV^{-1}km^{-2}sr^{-1}yr^{-1}}]$	E_{ankle} [EeV]	$E_{\rm s}$ [EeV]	γ_1	γ_2 $\Delta\gamma$

(2, 20, 1, 0, 15, 1, 0, 20) $(2, -10)$					211102101
$(3.30 \pm 0.15 \pm 0.20) \times 10^{-19}$	$4.82 \pm 0.07 \pm 0.8$	$42.09 \pm 1.7 \pm 7.61$	$3.29 \pm 0.02 \pm 0.05$	$2.60 \pm 0.02 \pm 0.1$	$3.14 \pm 0.2 \pm 0.4$

Mass Composition

The first two moments of the Xmax distribution (Xmax and σ (Xmax)) are related to the first two moments of the distribution of the logarithm of masses of primary particles (In A and σ (In A)).

Mass Composition: extension to the highest energies

Muon Production Depth (MPD) obtained from SD

QGSJETII.04: compatible values within 1.5σ .

EPOS-LHC: incompatibility at a level of at least 6 σ .

Result strongly dependent from hadronic interaction models. We need to constrain models.

Mass Composition (Xmax Shape)

500 600 700 800 900 X_{max} [g/cm²] 1000

Mass Composition (Xmax Shape)

Combined Fit: Spectrum and Composition

Attempt to fit Pierre Auger data on spectrum and composition to a simple astrophysical scenario: seven free parameters $\rightarrow J_0$, γ , R_{cut} , p_H , p_{He} , p_N , $p_{Si} \rightarrow$

Simulated Energy Spectrum obtained with the Best Fit Parameters

Errors on the elemental fractions are very large

 $p_{Fe} = 1 - \sum p_i$

 \rightarrow different combinations of elemental spectra can give rise to similar observed spectra

Arrival Directions: Small Scale Anisotropy

Blind search

Auto-correlation

Arrival Directions: Small Scale Anisotropy

Large Scale Anisotropy

E > 8 EeV

Dipole Searches:

Sky map in equatorial coordinates of flux, in $\text{km}^{-2} \text{yr}^{-1} \text{sr}^{-1}$ units, smoothed in angular windows of 45° radius, for observed events with energies E >8 EeV.

A largest departure from isotropy with a (4 +- 1)% amplitude in the first harmonic in RA was observed. The total dipole amplitude for the higher energy bin is 0.073 ± 0.015 pointing to $(\alpha, \delta) = (95^{\circ} \pm 13^{\circ}, -39^{\circ} \pm 13^{\circ}).$

Photon Search

Neutrino Search

Dow-going low angle: (2, 4) - DGL (60°-75°)

Dow-going high angle: (2, 4, 5) - DGH (75°-90°

Earth-Skimming: (3) – ES (90°-95°)

NO EVENTS OBSERVED

dN/dE = k E⁻² \rightarrow k \sim 6.4 x 10⁻⁹ GeV cm⁻² s⁻¹ sr⁻¹

90% CL in the energy range 0.1-25 EeV

Auger limit constrains models that assume a pure primary proton composition injected at the sources and strong evolution of the sources.

Proton-Air Cross Section

The tail of the deepest shower Xmax distributions is related to the first interaction points, and consequently to the proton-air cross section.

AugerPrime (up to 2025): Motivations

 The mass composition and the origin of flux suppression at the highest energies;

 Proton contribution in the flux suppression region (E> 5x 10¹⁹ eV);

3) Fundamental particle physics at energies beyond reach of man-made accelerators.

AugerPrime: Strategy

- Faster and more powerful electronics, small PMT in the tank to increase the dynamic range;
- Scintillator (SSD) above the WCD to measure the mass composition with 100% duty cycle;
- Underground Muon Detector with AMIGA to have a direct muon measurement;
- Extended FD operation to periods with higher night sky background to have more statistics.

 $S_{\mu,\text{WCD}} = a S_{\text{WCD}} + b S_{\text{SSD}}$

Conclusions

- Clear observation of spectral features;
- No clear picture about mass composition above ~ 40 EeV;
- Strong photon and neutrino limits;
- p-air and p-p cross section at $\sqrt{s} = 57$ TeV;
- No significative excess observed in studies of small scale anistropy;
- Large scale dipole.

AugerPrime will allow a study of mass composition above 5 x 10¹⁹ eV and address:

- Origin of the flux suppression (GZK energy loss Vs maximum energy of sources);
- Proton contribution of more than 10% above 5 x 1019 eV?
- particle astronomy, GZK γ and ν fluxes;
- New particle physics beyond the reach of LHC?

First SSD Prototypes Installed

Thank you for your attention

Energy Scale

Systematic uncertainties on the energy scale			
Absolute fluorescence yield	3.4%		
Fluor. spectrum and quenching param.	1.1%		
Sub total Fluorescence yield	3.6%		
Aerosol optical depth	3%÷6%		
Aerosol phase function	1%		
Wavelength depend. of aerosol scatt.	0.5%		
Atmospheric density profile	1%		
Sub total Atmosphere	3.4%÷6.2%		
Absolute FD calibration	9%		
Nightly relative calibration	2%		
Optical efficiency	3.5%		
Sub total FD calibration	9.9%		
Folding with point spread function	5%		
Multiple scattering model	1%		
Simulation bias	2%		
Constraints in the Gaisser-Hillas fit	$3.5\% \div 1\%$		
Sub total FD profile rec.	$6.5\% \div 5.6\%$		
Invisible energy	3%÷1.5%		
Stat. error of the SD calib. fit	$0.7\% \div 1.8\%$		
Stability of the energy scale	5%		
Total	14%		

Search 702 Point Sources 07 EeV Photons

The present study targets **all exposed celestial directions**. It is a "blind" search to see if there might be an indication of a photon flux from any direction.

Celestial Map of -log(p)

mean value = 0.035 photons $\text{km}^{-2} \text{yr}^{-1}$ (0.14 photons $\text{km}^{-2} \text{yr}^{-1}$) energy flux = 0.06 eV cm⁻² s⁻¹ (0.25 eV cm⁻² s⁻¹) $p = Poisson probability of having a number of observed events \ge expected bkg$

 $p_{min} = 4.5 \times 10^{-6} \rightarrow p_{chance} = 36\%$

NO SIGNIFICATIVE EXCESS

Muon Excess in Auger Data Proton Sim QII-04 p **Data/Sim** Energy: (13.8 ± 0.7) EeV Iron Sim -----**OII-04** Mixed 0 2 Data ---dE/dX [PeV/(g/cm²)] Zenith: $(56.5 \pm 0.2)^{\circ}$ a/sim 30 EPOS-LHC p χ^2 /dof (p) = 1.19 X_{Max} : (752 ± 9) g/cm² EPOS-LHC Mixed χ^2 /dof (Fe) = 1.21 20 Simulation tuned 0 • with data TT. longitudinal profile 10 1.2 1.6 1.8 400 600 800 1000 1.4 2 200 1200 Depth [g/cm²] $\sec \theta$ 2 Proton Sim Iron Sim 1.8 Data 1.6 10² 1.4 **Excess** in S [VEM] $\mathsf{R}_{\mathsf{had}}$ 1.2 data 10¹ 0.8 Systematic Uncert. QII-04 p 0.6 QII-04 Mixed 0 EPOS-LHC p 0.4 **EPOS-LHC Mixed** 10^{0} 500 1000 1500 2000 0.7 0.8 0.9 1.1 1.2 1.3 1 Radius [m] R_{F} $S_{\text{resc}}(R_E, R_{\text{had}})_{i,i} \equiv R_E S_{\text{EM},i,j} + R_{\text{had}} R_E^{\alpha} S_{\text{had},i,j}$

Muon Excess in Auger Data Proton Sim QII-04 p Energy: (13.8 ± 0.7) EeV Data/Sim Iron Sim ----o QII-04 Mixed 2 Data --dE/dX [PeV/(g/cm²)] Zenith: $(56.5 \pm 0.2)^{\circ}$ /sim 30 EPOS-LHC p γ^2 /dof (p) = 1.19 X_{Max} : (752 ± 9) g/cm² EPOS-LHC Mixed χ^2 /dof (Fe) = 1.21 20 Simulation tuned 0 • with data TT. longitudinal profile 10 1.2 1.6 1.8 1000 1.4 2 200 400 600 800 1200 Depth [g/cm²] $\sec \theta$ 2 Proton Sim Iron Sim Data To reproduce the higher signal in data: 10² increase the number of muons in S [VEM] simulations by 30 to 80% or increase the Auger energy scale by a 10 similar factor. EPOS-LHC p 0.4 **EPOS-LHC Mixed** 10^{0} 500 1000 1500 2000 0.7 0.8 0.9 1.1 1.2 1.3 1 Radius [m] R_{F} $S_{\text{resc}}(R_E, R_{\text{had}})_{i,i} \equiv R_E S_{\text{EM},i,j} + R_{\text{had}} R_E^{\alpha} S_{\text{had},i,j}$

SSD (Subface Scintillator Detector)

SSD: The Engineering Array

Twin stations will allow to verify particle number resolution

AugenPhime: Penspectives

 $S_{\mu,\text{WCD}} = a S_{\text{WCD}} + b S_{\text{SSD}}$

$$f_{\rm p,Fe} = rac{|\langle S_{\rm Fe} \rangle - \langle S_{\rm p} \rangle|}{\sqrt{\sigma(S_{\rm Fe})^2 + \sigma(S_{\rm p})^2}} \sim 1.5$$

AERA

- More than 150 antennas that cover an aerea of about 17 km².
- They are used to detect radio emission from extensive air showers in the 30 - 80 MHz frequency band.
- Duty cycle close to 100% (problems only during thunderstorms).
- Intercalibration among AMIGA-HEAT-standard FD-AERA.

5500 showers measured in coincidence with SD (300 with FD)

MAGNETIC MONOPOLES

Intermediate-mass monopoles (IMMs, $M \sim 10^{11} - 10^{20} \text{ eV/c}^2$).

Much larger energy deposit and deeper development.

The best limit for $y \ge 10^9$, with a factor of ten improvement for $y \ge 10^{9.5}$.