

Marco Del Tutto

52nd Rencontres de Moriond EW

21st March 2017

The MicroBooNE Experiment

Goals of the **Short Baseline Neutrino** program:

- low-energy excess observed by MiniBooNE
- sterile neutrinos
- cross section measurements

UNIVERSITY OF

OXFORD

Marco Del Tutto 21st March 2017

A liquid argon time projection chamber

Time

µBooNE

ν

→ Wires

55 cm

Colour shows amount of deposited charge

Run 3469 Event 53223/ October 21st, 2015

Stainless steel wires with gold coating

µBooNE

3 wire planes 8192 wires total

MicroBooNE cryostat lowered into the pit

Inside the detector: PMT system

5

Motivations

- Neutrino oscillation goals require precise measurements of neutrino (and antineutrino) cross sections (e.g. DUNE experiment).
- MicroBooNE can probe different theories of nuclear effects in v-Ar scattering
- v-Ar is important as there are only limited measurements and the future short and long baseline neutrino programs will both use argon for their neutrino detectors

Neutral Current Events

UNIVERSITY OF

OXFORD

Charged current events

- Collection plane images
- Colour indicates amount of deposited charge
- Neutrino beam coming from the left

Charged current events

- Collection plane images
- Colour indicates amount of deposited charge
- Neutrino beam coming from the left

Charged current events

Marco Del Tutto 21st March 2017

\mathbf{v}_{μ} CC-Inclusive Analysis

- First channel that will be addressed by the MicroBooNE cross-section program
- Simple: looking for a long muon track
- We have an automated reconstruction and event selection

Motivations

- Interesting physics measurement on argon, provides input for theory
- + Will constrain the $\nu_{e}\ rate$ in MicroBooNE and other backgrounds
- Will provide a sample to study other specific channels (π^0 , proton kinematics, ...)

CC-inclusive event distributions

- Simulation scaled to same number of events as data
- Cosmic background subtracted

CC-inclusive event distributions

Simulation scaled to same number of events as data ►

14

Cosmic background subtracted

CC-inclusive event selection performances

Conclusions

+ v_{μ} -CC inclusive measurement to kick off MicroBooNE cross-section

program with fully automated v_{μ} -CC inclusive event selection

Area normalised distributions show good data-MC comparison,

preliminary results, will improve for summer

- v_{μ} -CC inclusive cross-section measurement is underway
- Cross-section studies of many other channels are ongoing

Back up

Ongoing analyses at MicroBooNE

- CC-inclusive differential cross section measurement (this talk)
- Charged Particle Multiplicity
- Proton kinematics (leading proton momentum)
- CCpi0
- NC elastic
- NuMI nue CC

CC-inclusive event selection

Thanks to A. Schukraft

CC-inclusive event selection

CC-inclusive event selection

Neutral Current Interactions

32 8" Cryogenic PMTs + 4 light guide "paddles" 8192 wires 170 ton LArTPC (3 mm pitch) (total mass)

MicroBooNE cryostat lowered into the pit

Inside the detector: PMT system

Fermilab

Fermilab Accelerator Complex

Motivations for MicroBooNE

25

SBN - Neutrino oscillation

"A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam", arXiv:1503.01520v1

Marco Del Tutto 21st March 2017

