Searches for long-lived particles at the LHC

Moriond EW 2017 – La Thuile

Wouter Hulsbergen (Nikhef, LHCb) on behalf of the ATLAS, CMS and LHCb collaborations

Long-lived particles at the LHC

- long-lived particles (LLPs): resonances that live long enough to ...
 - ... escape the detector
 - ... decay in the detector, but far enough from the interaction point that the decay length can be measured

- LLPs at the LHC necessarily have lifetime τ > ~ 1ps
 - characteristic of weak decays
 - narrow resonances (as Γ = ħ/τ)

Long-lived particles in the Standard Model

- weak decays are backgrounds for LLP searches
- LHC experiments look for particles that do not fit this picture

Detection signatures at the LHC

What makes a particle long-lived?

• textbook formula for lifetime of the charged pion:

- many examples in SUSY:
 - small couplings: R-parity violating couplings, graviton LSP
 - small mass splitting: "Next-to-Lightest-SP"
 - heavy messenger: heavy squarks, Z-prime

One popular scenario: Hidden Valley

- scenario got renewed interest because of "neutral/uncolored naturalness"
 - top partner 'coloured' under a different SU(3) gauge group
 - dark sector has its own hadronization/confinement
 - Higgs mixes with dark sector scalar and decays to dark sector particles

(see e.g. Curtin and Verhaaren, arXiv:1506.06141; Craig e.a., arXiv:1501.05310v2,

Hidden Valley via a Higgs Portal

- - kinematics known (e.g. SM Higgs production)
 - LLP decays preferentially to heavy fermions (b,c,τ)
- three parameters: m(H), m(π_v), $\tau(\pi_v)$
- signature
 - most studied: displaced jets
 - alternative: fragmentation in hidden sector \rightarrow "emerging jets"

LLP searches at the LHC

- wide program: see e.g. program of LHC LLP workshops
- ATLAS and CMS are well suited:
 - large luminosity, efficient triggers, excellent tracking/calorimetry
 - new in run-2: 'topological triggers'
- LHCb collects less luminosity, but is more efficient at low mass and lifetime
 - modest p_T requirements; vertex triggers at very high rate
- common experimental issues, e.g. backgrounds:

weak decays of heavy flavour

110 120 130 140 150 160 170 180 190 200

cosmic muons

beam halo muons

Selected results

- ATLAS at 13 TeV:
 - neutral LLP in calo (ATLAS-CONF-2016-103) ٠
 - displaced lepton jets (ATLAS-CONF-2016-042) ۲

• CMS at 13 TeV, 2.6/fb:

• LHCb at 7/8 TeV:

•

- displaced e-mu pairs (CMS PAS-EXO-2016-022) ٠
- inclusive displaced jets (CMS PAS-EXO-2016-003) ۲

- displaced vertex with muon (LHCb-PAPER-2016-047)
- hidden valley pions decaying to di-jets (LHCb-PAPER-2016-065) ۲
- scalar resonances in $B \rightarrow K\mu\mu$ (LHCb-PAPER-2016-52) ٠

Inclusive displaced jets at 13 TeV at CMS

- two models: signature: "Jet-Jet": $H \rightarrow \pi_{V}\pi_{V} \rightarrow 4$ quarks 4 displaced hadronic jets "B-lepton": top squark pair production with lepton number 2 displaced hadronic jets violating decays + evt. tau jets b **CMS** *Preliminary* Jets / 0.02 analysis exploits "topological triggers": high- p_{T} jets with ≤ 2 tracks compatible with
 - off-line selection uses several observables to enhance fraction of displaced jets, e.g.

beam-line

• max of sum p_T associated to single PV

Inclusive displaced jets at 13 TeV at CMS

 events with 1 'tagged jet' used to estimate mistag probability as function of #tracks

 \rightarrow allows to estimate per-event background

• yield in signal region in 2.6/fb at 13 TeV:

$N_{ m tags}$	observed	expected
2	1	1.09 ± 0.16
≥ 3	0	$(4.9 \pm 1.0) \cdot 10^{-4}$

• interpretation in models:

top squark results are most constraining for long-lived stops to date

∲_≪

Heavy Higgs decays to track-less jets at ATLAS

- model: heavy Higgs mixing with dark sector scalar
- signature: events with ≥2 hadronic jets without tracks

- main backgrounds
 - multi-jet background
 - cosmics
 - beam-halo muons

- finite region in decay length:
 - barrel: 2.0 < R_{xy} < 3.6 m
 - end-cap: $4.2 < R_z < 5.4$ m
- search tuned for LLPs with mass 100-150 GeV, pair produced in the decay of a scalar of 400-1000 GeV
 - main discriminants
 - fraction of hadronic energy ('CalRatio')
 - jet width
 - proximity of high-PT tracks to jet axis
 - calo cluster time

Heavy Higgs decays to track-less jets at ATLAS

- event yield in 3.2/fb at 13 TeV:
 - 24 observed
 - 18.0 ± 6.3 expected background
- limits as function of lifetime for different values of m_{ϕ} and m_s

best sensitivity obtained for lifetimes in range 0.5-5 ns

13

Hidden Valley v-pions decaying to jet pairs at LHCb

• model: Higgs decay to two LLPs each decaying to two fermions

 LHCb signature: single displaced vertex with two associated jets (LHCb acceptance for all 4 jets is small, only few %)

- analysis strategy
 - trigger on displaced vertex
 - find two associated jets
 - extract signal from fit to di-jet mass in bins of distance to beam axis (R_{xv})

Hidden Valley v-pions decaying to jet pairs at LHCb

- no excess above background in 2.0/fb of 7/8 TeV data
- place 95% CL upper limits on BR($H^0(125) \rightarrow \pi_V \pi_V, \pi_V \rightarrow bb$) for 25 < m < 50 GeV and 2 < τ < 500 ps
- most sensitive point (m=50 GeV, t=10 ps) exclude BR > 10 %

compared to similar analyses from ATLAS (left) and CMS, LHCb is more sensitive in region with small mass and lifetime

16

Displaced lepton jets at 13 TeV at ATLAS (see also V. Martinez Outschoorn in Sunday session!)

• FRVZ^(*) model: Higgs decays to dark sector fermions, that radiate dark photons decaying to lepton pairs

 search strategy: look for events with 2 or 4 jets consisting of pairs of muons, electrons or pions without tracks

(*) Falkowski-Ruerman-Volansky-Zupan, JHEP05(2010)077, PRL105(2010)241801

Displaced lepton jets at 13 TeV at ATLAS

observed event yields in 3.4/fb compatible with background

observed	exp.bkg.	$H(125) \rightarrow 2 \gamma_d + X$	H(125) \rightarrow 4 γ_{d} + X	RF
46	32 ± 9	111 ± 2	96 ± 2	2

results interpreted in FRVZ model with dark photon mass of 400 MeV:

- Higgs branching fraction larger than 10% excluded for $2 < c\tau < 111$ mm
- see paper for limits on model with Higgs of 800 GeV

Displaced e-mu pairs at 13 TeV at CMS

- model: top squark pair production with lepton number violating R-parity violation
- signature: displaced, non-vertexed muon-electron pairs

- main background: semileptonic b and c decays
 - shape estimated using B-tagged tag-and-probe method

18

Displaced e-mu pairs at 13 TeV at CMS

• event yield in different signal regions in 2.6 fb⁻¹ at 13 TeV

 interpretation in context of stop pair production, for simplified model with decoupled squarks and gluinos:
 2.6 fb⁻¹ (13 TeV)

 similar displaced di-lepton analyses in RUN-1 data: CMS, PRL114(215)061801 ATLAS, PRD92(2015)072004

Semi-leptonic LLP decays at LHCb at 7 and 8 TeV

- model: mSUGRA neutralino decaying to a lepton and 2 quarks
- signature: single displaced vertex with 1 muon

- result: no excess above background, at 7 and 8 TeV
- interpretation in various models, a.o.
 - non-resonant neutralino production
 - production in squark decays
 - production in Higgs decays (see right) as function of χ mass and lifetime
- at most sensitive point (~50GeV, ~10ps) reject BR(H→χχ) > 1%

Hidden sector $\chi \longrightarrow \mu^+ \mu^-$ in B⁺ $\longrightarrow K^+ \mu^+ \mu^-$ at LHCb

- $b \rightarrow s$ quark transitions give access to new light narrow scalar resonances
 - (prompt) axion (e.g. Freytsis, Ligeti and Thaler, <u>arXiv:0911.5355</u>)
 - (long-lived) inflaton (e.g. Bezrukov and Gorbunov, <u>arXiv:0912.0390</u>) via mixing with SM Higgs

- experimental method:
 - search for narrow peak in μμ invariant mass in B→Kμμ decays, in 3 different μμ lifetime bins
 - normalize to $10^6 \text{ B} \rightarrow \text{J}/\psi \text{ K}$ decays

Hidden sector $\chi \longrightarrow \mu^+ \mu^-$ in $B^+ \longrightarrow K^+ \mu^+ \mu^-$ at LHCb

[sd] (χ)

- no signal above background in 3.0/fb of 7/8 TeV data
- obtained 95% CL on branching fraction as function of m_χ and τ_χ white areas excluded because of backgrounds from Ks, φ(1040), J/ψ, ψ(2S) and ψ(4160)

- interpretation in inflaton model: $\mathcal{B}(B^+ \to K^+ \chi) \propto \theta^2$ Higgs-inflaton $au(\chi) \propto 1/\theta^2$ mixing
 - \rightarrow most of parameter space excluded
- similar searches for LLPs in B decays: $\chi \rightarrow \mu \mu$ in B $\rightarrow K^* \mu \mu$ (<u>PRL 115, 161802 (2015)</u>) N $\rightarrow \mu \pi$ in B $\rightarrow \pi \mu \mu$ (<u>PRL 112,131802 (2014)</u>)

Summary

- long-lived particle signature is well-motivated and gaining in popularity
 - R-parity violating SUSY, sterile neutrinos, hidden valleys ...
- wide variety of searches
 - this talk: new results on signatures with a 'displaced vertex'
 - for other signatures, see talks by Spiezia and Kaji
- no discovery so far ... but we keep looking!
- next LHC LLP workshop (CERN, 24-26 April 2017)

https://indico.cern.ch/event/607314/

- missing signatures
- triggers
- recasting
- ••••

BACKUP

ATLAS Long-lived Particle Searches* - 95% CL Exclusion

Status: July 2015

	Model	Signature	∫£ dt[fb	-1]	Lifetime limit			Reference
	${\rm RPV}\chi_1^0\to ee\nu/e\mu\nu/\mu\mu\nu$	displaced lepton pair	20.3	χ_1^0 lifetime	7-740 mm		$m(ilde{g}) = 1.3$ TeV, $m(\chi^0_1) = 1.0$ TeV	1504.05162
SUSY	$\operatorname{GGM} \chi_1^0 \to Z \tilde{G}$	displaced vtx + jets	20.3	χ_1^0 lifetime	6-480 mm		$m(ilde{g})=1.1$ TeV, $m(\chi^0_1)=1.0$ TeV	1504.05162
	AMSB $pp \rightarrow \chi_1^{\pm} \chi_1^0, \chi_1^+ \chi_1^-$	disappearing track	20.3	χ_1^{\pm} lifetime		0.22-3.0 m	$m(\chi_1^{\pm})=$ 450 GeV	1310.3675
	AMSB $pp \rightarrow \chi_1^{\pm} \chi_1^0, \chi_1^+ \chi_1^-$	large pixel dE/dx	18.4	χ_1^{\pm} lifetime		1.31-9.0 m	$m(\chi_1^{\pm})=$ 450 GeV	1506.05332
	GMSB	non-pointing or delayed γ	20.3	χ_1^0 lifetime	-	0.08-5.4 m	SPS8 with $\Lambda=200~\text{TeV}$	1409.5542
	Stealth SUSY	2 ID/MS vertices	19.5	Š lifetime			0.12-90.6 m $m(\tilde{g}) = 500 \text{ GeV}$	1504.03634
Higgs BR = 10%	Hidden Valley $H \rightarrow \pi_v \pi_v$	2 low-EMF trackless jets	20.3	π_{v} lifetime		0.41-7.57 m	$m(\pi_{ m v})=25~{ m GeV}$	1501.04020
	Hidden Valley $H \rightarrow \pi_v \pi_v$	2 ID/MS vertices	19.5	$\pi_{\mathbf{v}}$ lifetime		0.31-25	.4 m m(π _v) = 25 GeV	1504.03634
	FRVZ $H \rightarrow 2\gamma_d + X$	2 <i>e</i> −, <i>μ</i> −, <i>π</i> −jets	20.3	$\gamma_{\rm d}$ lifetime	14-140 mm		$H ightarrow 2\gamma_d + X$, $m(\gamma_d) = 400 \text{ MeV}$	1409.0746
	FRVZ $H \rightarrow 4\gamma_d + X$	2 <i>e</i> -, μ-, π-jets	20.3	γ_{d} lifetime	15-260 mm		$H ightarrow 4\gamma_d + X, m(\gamma_d) = 400 \; { m MeV}$	1409.0746
Higgs BR = 5%	Hidden Valley $H \rightarrow \pi_v \pi_v$	2 low-EMF trackless jets	20.3	π_v lifetime		0.6-5.0 m	$m(\pi_{ m v})=25~{ m GeV}$	1501.04020
	Hidden Valley $H \rightarrow \pi_v \pi_v$	2 ID/MS vertices	19.5	π_v lifetime	_	0.43-18.1 m	$m(\pi_{ m v})=25~{ m GeV}$	1504.03634
	FRVZ $H \rightarrow 4\gamma_d + X$	2 <i>e</i> -, μ-, π-jets	20.3	γ_{d} lifetime	28-160 mm		$H ightarrow 4\gamma_d + X, \ m(\gamma_d) = 400 \ \text{MeV}$	1409.0746
300 GeV scalar	Hidden Valley $\Phi \rightarrow \pi_v \pi_v$	2 low-EMF trackless jets	20.3	π_v lifetime		0.29-7.9 m	$\sigma imes BR$ = 1 pb, $m(\pi_{ ext{v}}) = 50 \; GeV$	1501.04020
	Hidden Valley $\Phi \rightarrow \pi_v \pi_v$	2 ID/MS vertices	19.5	π_v lifetime		0.19	-31.9 m $\sigma \times BR$ = 1 pb, $m(\pi_v) = 50 \text{ GeV}$	1504.03634
900 GeV scalar	Hidden Valley $\Phi \rightarrow \pi_v \pi_v$	2 low-EMF trackless jets	20.3	π_v lifetime		0.15-4.1 m	$\sigma imes BR$ = 1 pb, $m(\pi_v) = 50 \; GeV$	1501.04020
	Hidden Valley $\Phi \to \pi_v \pi_v$	2 ID/MS vertices	19.5	π_v lifetime		0.11-18.3 m	$\sigma \times BR = 1 \text{ pb, } m(\pi_v) = 50 \text{ GeV}$	1504.03634
Other	HV $Z'(1 \text{ TeV}) \rightarrow q_v q_v$	2 ID/MS vertices	20.3	π_v lifetime		0.1-4.9 m	$\sigma imes BR$ = 1 pb, $m(\pi_v) = 50 \; GeV$	1504.03634
	HV Z'(2 TeV) $ ightarrow q_{ m v} q_{ m v}$	2 ID/MS vertices	20.3	π_{v} lifetime		0.1-10.1 m	$\sigma imes BR$ = 1 pb, $m(\pi_v) = 50 \; GeV$	1504.03634
			_	0.01	0.1	1 10	¹⁰⁰ cτ [m]	
			√s =	8 TeV				

*Only a selection of the available lifetime limits on new states is shown.

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

ATLAS Preliminary $\int \mathcal{L} dt = (18.4 - 20.3) \text{ fb}^{-1}$ $\sqrt{s} = 8 \text{ TeV}$

γ₃=01e

25

CMS long-lived particle searches, lifetime exclusions at 95% CL

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

Example of reinterpretation in CMS: constraints on long-lived stop pair production from a lepto-quark analysis