NP evidences + hadronic uncertainties in $b \rightarrow$ sll: The state-of-the-art

Joaquim Matias
Universitat Autònoma de Barcelona

Moriond EW

In collaboration with: B. Capdevila, S. Descotes-Genon, L. Hofer and J. Virto
Based on: CDVM'16 (JHEP 1610 (2016) 075) and CDHM'17 arXiv:1701.08672 (to appear in JHEP).

Present situation

concerning evidences of NP in $b \rightarrow s \ell$

$$
b \rightarrow \boldsymbol{s \gamma}\left(^{*}\right): \mathcal{H}_{\Delta F=1}^{S M} \propto \sum V_{t s}^{*} V_{t b} \mathcal{C}_{i} \mathcal{O}_{i}+\ldots
$$

$$
\text { separate short and long distances (} \mu_{b}=m_{b} \text {) }
$$

- $\mathcal{O}_{7}=\frac{e}{16 \pi^{2}} m_{b} \overline{\boldsymbol{s}} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) F_{\mu \nu} b \quad$ [real or soft photon]
- $\mathcal{O}_{9}=\frac{e^{2}}{16 \pi^{2}} \bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{\ell} \gamma^{\mu} \ell[b \rightarrow s \mu \mu$ via $Z /$ hard $\gamma \ldots]$
- $\mathcal{O}_{10}=\frac{e^{2}}{16 \pi^{2}} \bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{\ell} \gamma^{\mu} \gamma_{5} \ell \quad[b \rightarrow s \mu \mu$ via $Z]$

$$
\mathcal{C}_{7}^{S \mathrm{M}}=-0.29, \mathcal{C}_{9}^{\mathrm{SM}}=4.1, \mathcal{C}_{10}^{\mathrm{SM}}=-4.3
$$

$A=\mathcal{C}_{i}$ (short dist) \times Hadronic quantities (long dist)

NP changes short-distance \mathcal{C}_{i} for SM or involve additional operators \mathcal{O}_{i}

- Chirally flipped $\left(W \rightarrow W_{R}\right)$
$\mathcal{O}_{7^{\prime}} \propto \overline{\boldsymbol{s}} \sigma^{\mu \nu}\left(1-\gamma_{5}\right) F_{\mu \nu} b$
- (Pseudo)scalar ($W \rightarrow H^{+}$)
- Tensor operators $(\gamma \rightarrow T)$
$\mathcal{O}_{S} \propto \bar{s}\left(1+\gamma_{5}\right) b \bar{\ell} \ell, \mathcal{O}_{P}$
$\mathcal{O}_{T} \propto \bar{s} \sigma_{\mu \nu}\left(1-\gamma_{5}\right) b \bar{\ell} \sigma_{\mu \nu} \ell$

Using symmetries in $E_{K^{*}} \rightarrow \infty$ and HQL: A_{i}, V_{i}, T_{i} full-FF $\rightarrow \xi_{\perp, \|}$ (SFF)

P_{5}^{\prime} anomaly (Preludio)

Belle confirmed it in a bin $[4,8]$ few months ago.

- High sensitivity to C_{9} and lower to C_{10} :

$$
\begin{gathered}
\left.P_{5}^{\prime}\right|_{\infty}=-\frac{1}{\mathcal{N}} \operatorname{Re}\left[\left(C_{9-}^{\text {eff }}+2 \hat{m}_{b} C_{7}^{\text {eff }}\right)\left(C_{9-}^{\text {eff* }}+2 \frac{\hat{m}_{b}}{\hat{s}} C_{7}^{\text {eff }}\right)-\left(C_{9+}^{\text {eff }}+2 \hat{m}_{b} C_{7}^{\text {eff }}\right)\left(C_{9+}^{\text {eff* }}+2 \frac{\hat{m}_{b}}{\hat{s}} C_{7}^{\text {eff } *}\right)\right] \\
\text { where } C_{9 \pm}^{\text {eff }}=C_{9}^{\text {eff }} \pm C_{10}
\end{gathered}
$$

- A possible interpretation: in absence of RHC, cosine of the relative angle between $n_{\perp}=\left(A_{\perp}^{L},-A_{\perp}^{R *}\right)$ and the longitudinal $n_{0}=\left(A_{0}^{L}, A_{0}^{R *}\right)$.

P_{5}^{\prime} was proposed in DMRV, JHEP 1301(2013)048

$$
P_{5}^{\prime}=\sqrt{2} \frac{\operatorname{Re}\left(A_{0}^{L} A_{\perp}^{L *}-A_{0}^{R} A_{\perp}^{R *}\right)}{\sqrt{\left|A_{0}\right|^{2}\left(\left|A_{\perp}\right|^{2}+\left|A_{\|}\right|^{2}\right)}}=P_{5}^{\infty}\left(1+\mathcal{O}\left(\alpha_{\mathrm{s}} \xi_{\perp}\right)+\text { p.c. }\right) .
$$

Optimized Obs.: Soft form factor $\left(\xi_{\perp}\right)$ cancellation at LO.

- 2013: $1 \mathrm{fb}^{-1}$ dataset LHCb found 3.7σ
- 2015: $3 \mathrm{fb}^{-1}$ dataset LHCb (in blue) found 3σ in 2 bins.
\Rightarrow Predictions (in red) from DHMV.
- Belle confirmed it in a bin $[4,8]$ few months ago.

1 Computed in i-QCDF + KMPW + 4-types of correct. $F^{\text {full }}\left(q^{2}\right)=F^{\text {soft }}\left(\xi_{\perp}, \xi_{\|}\right)+\triangle F^{\alpha_{s}}\left(q^{2}\right)+\triangle F^{\text {p.c. }}\left(q^{2}\right)$

type of correction	Factorizable	Non-Factorizable
α_{s}-QCDF	$\triangle F^{\alpha_{s}}\left(q^{2}\right)$	
power-corrections	$\triangle F^{\text {p.c. }}\left(q^{2}\right)$	LCSR with single soft gluon contribution

- q^{2} invariant mass of $\ell \ell$ pair
- $\operatorname{Br}(B \rightarrow K \mu \mu)$ too low compared to SM
- $R_{K}=\left.\frac{\operatorname{Br}(B \rightarrow K \mu \mu)}{B r(B \rightarrow K e e)}\right|_{[1,6]}=0.745_{-0.074}^{+0.090} \pm 0.036$
- equals to 1 in SM (universality of lepton coupling), $2.6 \sigma \mathrm{dev}$
- NP coupling \neq to μ and e

Systematic low-recoil small tensions (EXP too low compared with SM in several BR_{μ} also at large-recoil):

$b \rightarrow s \mu^{+} \mu^{-}$(low-recoil)	bin	SM	EXP	Pull
$10^{7} \times \operatorname{BR}\left(B^{0} \rightarrow K^{0} \mu^{+} \mu^{-}\right)$	$[15,19]$	0.91 ± 0.12	0.67 ± 0.12	+1.4
$10^{7} \times \operatorname{BR}\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right)$	$[16,19]$	1.66 ± 0.15	1.23 ± 0.20	+1.7
$10^{7} \times \operatorname{BR}\left(B^{+} \rightarrow K^{*+} \mu^{+} \mu^{-}\right)$	$[15,19]$	2.59 ± 0.25	1.60 ± 0.32	$\mathbf{+ 2 . 5}$
$10^{7} \times \operatorname{BR}\left(B_{s} \rightarrow \phi \mu^{+} \mu^{-}\right)$	$[15,18.8]$	2.20 ± 0.17	1.62 ± 0.20	$\mathbf{+ 2 . 2}$

After including the BSZ DA correction that affected the error of twist-4:

$10^{7} \times \mathrm{BR}\left(B_{s} \rightarrow \phi \mu^{+} \mu^{-}\right)$	SM	EXP	Pull
$[0.1,2]$	1.56 ± 0.35	1.11 ± 0.16	+1.1
$[2,5]$	1.55 ± 0.33	0.77 ± 0.14	$+\mathbf{2 . 2}$
$[5,8]$	1.89 ± 0.40	0.96 ± 0.15	$\mathbf{+ 2 . 2}$

A precise measurement of F_{L} (to near to 1) around $[1-2.5] \mathrm{GeV}^{2}$ will impact P_{2}
\Rightarrow will have a strong impact in the global analysis pull.

Global analysis of $b \rightarrow \boldsymbol{s} \mu \mu$ anomalies

96 observables in total (LHCb for exclusive, no CP-violating obs)

- $B \rightarrow K^{*} \mu \mu\left(P_{1,2}, P_{4,5,6,8}^{\prime}, F_{L}\right.$ in 5 large-recoil bins +1 low-recoil bin)+available electronic observables.
- $B_{s} \rightarrow \phi \mu \mu\left(P_{1}, P_{4,6}^{\prime}, F_{L}\right.$ in 3 large-recoil bins +1 low-recoil bin)
- $B^{+} \rightarrow K^{+} \mu \mu, B^{0} \rightarrow K^{0} \ell \ell(\mathrm{BR})(\ell=e, \mu)$
- $B \rightarrow X_{s} \gamma, B \rightarrow X_{s} \mu \mu, B_{s} \rightarrow \mu \mu(\mathrm{BR}), B \rightarrow K^{*} \gamma\left(A_{l}\right.$ and $\left.S_{K^{*} \gamma}\right)$

Various tools

- inclusive: OPE
- excl large-meson recoil: QCD fact, Soft-collinear effective theory
- excl low-meson recoil: Heavy quark eff th, Quark-hadron duality

Global analysis of $b \rightarrow \boldsymbol{s} \mu \mu$ anomalies

96 observables in total (LHCb for exclusive, no CP-violating obs)

- $B \rightarrow K^{*} \mu \mu\left(P_{1,2}, P_{4,5,6,8}^{\prime}, F_{L}\right.$ in 5 large-recoil bins +1 low-recoil bin)+available electronic observables.
- $B_{s} \rightarrow \phi \mu \mu\left(P_{1}, P_{4,6}^{\prime}, F_{L}\right.$ in 3 large-recoil bins +1 low-recoil bin)
- $B^{+} \rightarrow K^{+} \mu \mu, B^{0} \rightarrow K^{0} \ell \ell(\mathrm{BR})(\ell=e, \mu)$
- $B \rightarrow X_{s} \gamma, B \rightarrow X_{s} \mu \mu, B_{s} \rightarrow \mu \mu(\mathrm{BR}), B \rightarrow K^{*} \gamma\left(A_{I}\right.$ and $\left.S_{K^{*} \gamma}\right)$

Various tools

- inclusive: OPE
- excl large-meson recoil: QCD fact, Soft-collinear effective theory
- excl low-meson recoil: Heavy quark eff th, Quark-hadron duality

Frequentist analysis

- $\mathcal{C}_{i}\left(\mu_{\text {ref }}\right)=\mathcal{C}_{i}^{S M}+\mathcal{C}_{i}^{N P}$, with $\mathcal{C}_{i}^{N P}$ assumed to be real (no CPV)
- Experimental correlation matrix provided
- Theoretical inputs (form factors...) with correlation matrix computed treating all theo errors as Gaussian random variables
- Hypotheses "NP in some \mathcal{C}_{i} only" (1D, 2D, 6D) to be compared with SM

96 observables in total (LHCb for exclusive, no CP-violating obs)

- $B \rightarrow K^{*} \mu \mu\left(P_{1,2}, P_{4,5,6,8}^{\prime}, F_{L}\right.$ in 5 large-recoil bins + 1 low-recoil bin)+available electronic observables.
- $B_{s} \rightarrow \phi \mu \mu\left(P_{1}, P_{4,6}^{\prime}, F_{L}\right.$ in 3 large-recoil bins +1 low-recoil bin)
- $B^{+} \rightarrow K^{+} \mu \mu, B^{0} \rightarrow K^{0} \ell \ell(\mathrm{BR})(\ell=e, \mu)$
- $B \rightarrow X_{s} \gamma, B \rightarrow X_{s} \mu \mu, B_{s} \rightarrow \mu \mu(\mathrm{BR}), B \rightarrow K^{*} \gamma\left(A_{l}\right.$ and $\left.S_{K^{*} \gamma}\right)$

Various tools

- inclusive: OPE
- excl large-meson recoil: QCD fact, Soft-collinear effective theory
- excl low-meson recoil: Heavy quark eff th, Quark-hadron duality

Frequentist analysis

- $\mathcal{C}_{i}\left(\mu_{\text {ref }}\right)=\mathcal{C}_{i}^{S M}+\mathcal{C}_{i}^{N P}$, with $\mathcal{C}_{i}^{N P}$ assumed to be real (no CPV)
- Experimental correlation matrix provided
- Theoretical inputs (form factors. ..) with correlation matrix computed treating all theo errors as Gaussian random variables
- Hypotheses "NP in some \mathcal{C}_{i} only" (1D, 2D, 6D) to be compared with SM

Updated result pre- $R_{K^{*}}$ and pre- Q_{i}

Includes updated $\mathrm{BR}\left(B \rightarrow K^{*} \mu^{+} \mu^{-}\right)+$corrected BSZ for $B_{s} \rightarrow \phi \mu^{+} \mu^{-}$. $P_{5}^{\prime \mu \mathrm{BELLE}}$ would add +0.1 to $+0.3 \sigma$. A scenario with a large SM-pull \Rightarrow big improvement over SM and better description of data.

Coefficient	Best fit	1σ	Pull
$\mathcal{C}_{7}^{\mathrm{NP}}$	-0.02	$[-0.04,-0.00]$	1.1
$\mathcal{C}_{9}^{\mathrm{NP}}$	-1.05	$[-1.25,-0.85]$	4.7
$\mathcal{C}_{10}^{\mathrm{NP}}$	0.55	$[0.34,0.77]$	2.8
$\mathcal{C}_{7}^{\mathrm{NP}}$	0.02	$[-0.00,0.04]$	0.9
$\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}$	0.06	$[-0.18,0.30]$	0.3
$\mathcal{C}_{10}^{\mathrm{NP}}$	-0.03	$[-0.20,0.14]$	0.2
$\mathcal{C}_{9}^{\mathrm{NP}}=\mathcal{C}_{10}^{\mathrm{NP}}$	-0.18	$[-0.36,0.02]$	0.9
$\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{10}^{\mathrm{NP}}$	-0.59	$[-0.74,-0.44]$	4.3
$\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}=-\mathcal{C}_{10}^{\mathrm{NP}}$	0.03	$[-0.08,0.13]$	0.2
$\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}$	-1.00	$[-1.20,-0.78]$	4.4
$\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{10}^{\mathrm{NP}}$			
$=-\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}=-\mathcal{C}_{10^{\prime}}^{\mathrm{NP}}$	-0.61	$[-0.45,-0.45]$	4.3

Global fit: Results

All deviations add up constructively

- A NP contribution to $C_{9, \mu}=-1.1$ with a pull-SM above 4.5σ alleviates all anomalies and tensions.
- NP contributions to the rest of Wilson coefficient are not (for the moment) yet significantly different from zero.

See A. Crivellin's, Panico's,... talk for models.

Allowing for more than one Wilson coefficient to vary different scenarios with pull-SM beyond 4σ pop-up:

(C_{9}, C_{10})

(C_{9}, C_{9}^{\prime})

($C_{9}=-C_{9}^{\prime} \& C_{10}=C_{10}^{\prime}$)

- BR and angular observables both favour $C_{9}^{\mathrm{NP}} \simeq-1$ in all 'good scenarios'.
....My personal understanding (see back-up) from the analysis of each anomaly/tension is that with more data/precision ALL Wilson coefficients will switch on (including small contrib. primes and radiatives) in delicated cancellations in each observable.

Results in agreement with different analyses, regions and channels

[Hurth, Mahmoudi, Neshatpour]

- Different observables (LHCb only or averages, P_{i} or J_{i})
- Different form factor inputs
- Different treatments of hadronic corrections
- Same pattern of NP scenarios favoured (here, $\mathcal{C}_{9}^{\mathrm{NP}}, \mathcal{C}_{10}^{\mathrm{NP}}$)

But also consistency between low and large recoil and between different modes.

There have been some attempts by a few groups to try to explain a subset of the previous anomalies using two arguments:

- huge factorizable power corrections

- or unknown charm contributions...

\rightarrow we will show (using illustrative examples) in a pedagogical way where these attempts fail. [See 1701.08672 for all details.]
We will first discuss the theoretical arguments to deconstruct these 'explanations' and later see what type of experimental evidences will help in fully closing the discussion (with the help of Nature).

There have been some attempts by a few groups to try to explain a subset of the previous anomalies using two arguments:

- huge factorizable power corrections

(easy to discard)

- or unknown charm contributions... (more difficult to discard but also possible)

\rightarrow we will show here (using illustrative examples) in a pedagogical way where these attempts fail. [See 1701.08672 for all details.]
We will first discuss the theoretical arguments to deconstruct these 'explanations' and later see what type of experimental evidences will help in fully closing the discussion (with the help of Nature).

Can factorizable power corrections be an acceptable explanation?

NO. Two main reasons:

$$
F^{\text {full }}\left(\mathbf{q}^{2}\right)=F^{\text {soft }}\left(\xi_{\perp}, \xi_{\|}\right)+\triangle F^{\alpha_{s}}\left(q^{2}\right)+\triangle \mathrm{F}^{\wedge}\left(\mathbf{q}^{2}\right) \quad \triangle F^{\wedge}=\left(a_{F}+\triangle a_{F}\right)+\left(b_{F}+\Delta b_{F}\right) q^{2} / m_{B}^{2}+\ldots
$$

1 Scheme dependence: choice of definition of $\operatorname{SFF} \xi_{\perp, \|}$ in terms of full-FF.
ALERT: Observables are scheme independent only if all correlations (including correlations of $\triangle \mathbf{a}_{\mathrm{F}}$...) are included.
Not including the later ones [Jaeger et.al. and DHMV] $\triangle F^{\mathrm{PC}}=F \times \mathcal{O}\left(\Lambda / m_{B}\right)$ require careful scheme choice:
\rightarrow risk to inflate artificially the error in observables.
2 Correlations among observables via (a_{F}, \ldots) power corrections. Require a global view.

Two methods:

- Our I-QCDF using SFF+corrections+KMPW-FF [Descotes-Genon, Hofer, Matias, Virto]
- Full-FF + eom using BSZ-FF [Bharucha, Straub, Zwicky]

Can factorizable power corrections be an acceptable explanation?

NO. Two main reasons:

$$
\mathrm{F}^{\text {full }}\left(\mathbf{q}^{2}\right)=F^{\text {soft }}\left(\xi_{\perp}, \xi_{\|}\right)+\triangle F^{\alpha_{s}}\left(q^{2}\right)+\triangle \mathrm{F}^{\wedge}\left(\mathbf{q}^{2}\right) \quad \triangle F^{\wedge}=\left(a_{F}+\triangle a_{F}\right)+\left(b_{F}+\Delta b_{F}\right) q^{2} / m_{B}^{2}+\ldots
$$

1 Scheme dependence: choice of definition of $\operatorname{SFF} \xi_{\perp, \|}$ in terms of full-FF.
ALERT: Observables are scheme independent only if all correlations (including correlations of $\triangle \mathbf{a}_{\mathrm{F}}$...) are included.

Not including the later ones [Jaeger et.al. and DHMV] $\triangle F^{\mathrm{PC}}=F \times \mathcal{O}\left(\Lambda / m_{B}\right)$ require careful scheme choice:
\rightarrow risk to inflate artificially the error in observables.
2 Correlations among observables via (a_{F}, \ldots) power corrections. Require a global view.

Two methods:

- Our I-QCDF using SFF+corrections+KMPW-FF [Descotes-Genon, Hofer, Matias, Virto]
- Full-FF + eom using BSZ-FF [Bharucha, Straub, Zwicky] radically different treatment of factorizable p.c. give SM-predictions for P_{5}^{\prime} in very good agreement (1σ or smaller).

About size

Compare the ratio A_{1} / V (that controls P_{5}^{\prime}) computed using BSZ (including correlations) and computed with our approach for different size of power corrections.

Assigning a 5% error (we take 10%) to the power correction error reproduces the full error of the full-FF!!! Let's illustrate now points 1 and 2 with two examples.

Scheme-dependence (illustrative example-l)

$\star \Delta F^{\mathrm{PC}}=F \times \mathcal{O}\left(\Lambda / m_{B}\right)$ $\sim F \times 10 \%$
\star correlations from large-recoil sym.

$$
\rightarrow \xi_{\perp, \|}, \triangle F^{\mathrm{PC}} \text { uncorr. }
$$

$P_{5}^{\prime}[4.0,6.0]$	scheme 1 [CDHM]	scheme 2 [JC]
$\boxed{1}$	$-0.72 \pm \mathbf{0 . 0 5}$	$-0.72 \pm \mathbf{0 . 1 2}$
2	-0.72 ± 0.03	-0.72 ± 0.03
2	-0.72 ± 0.03	-0.72 ± 0.03
3	$-0.72 \pm \mathbf{0 . 0 3}$	

errors only from pc with BSZ form factors
[Capdevila, Descotes, Hofer, JM]

Full LCSR

information
$\star \Delta F^{P C}$ from fit to LCSR
\star correlations from LCSR
$\rightarrow \xi_{\perp, \|}, \triangle F^{\mathrm{PC}}$ corr.
large-recoil sym.
$\rightarrow \xi_{\perp, \|}, \triangle F^{\text {PC }}$ uncorr.

- [Bharucha, Straub, Zwicky] as example (correlation provided)
- scheme indep. restored if $\triangle F^{P C}$ from fit to LCSR, with expected magnitude
- sensitivity to scheme can be understood analytically
- no uncontrolled large power corrections for P_{5},

Correlations (illustrative example-II)

- How much I need to inflate the errors from factorizable p.c. to get 1- σ agreement with data for $P_{5[4,6]}^{\prime}$ and $P_{1[4,6]}$ individually?
\star One needs near 40% p.c. for $P_{5[4,6]}^{\prime}$ and 0% for $P_{1[4,6]}$.
* This would be in direct conflict with the two existing LCSR computations: KMPW and BSZ.
- But including the strong correlation between p.c. of $P_{5[4,6]}^{\prime}$ and $P_{1[4,6]}$ [CDHM] more than 60% ($>80 \%$ in bin $[6,8]$) is required!!!

$$
\begin{aligned}
P_{5}^{\prime}=\left.P_{5}^{\prime}\right|_{\infty}(1 & +\frac{2 a_{V_{-}}-2 a_{T_{-}}}{\xi_{\perp}} \frac{C_{7}^{\mathrm{eff}}\left(C_{9, \perp} C_{9, \|}-C_{10}^{2}\right)}{\left(C_{9, \perp}+C_{9, \|}\right)\left(C_{9, \perp}^{2}+C_{10}^{2}\right)} \frac{m_{b} m_{B}}{q^{2}} \\
& -\frac{2 a_{\mathrm{V}_{+}}}{\xi_{\perp}} \frac{\mathbf{C}_{9, \|}}{\mathbf{C}_{9, \perp}+\mathrm{C}_{9, \|}}+\ldots \\
P_{1} & =-\frac{2 a_{\mathrm{v}_{+}}}{\xi_{\perp}} \frac{\left(\mathbf{C}_{9}^{\mathrm{eff}} \mathrm{C}_{9, \perp}+\mathrm{C}_{10}^{2}\right)}{\mathbf{C}_{9, \perp}^{2}+\mathbf{C}_{10}^{2}}+\ldots
\end{aligned}
$$

The leading term in red in P_{5}^{\prime} is missing in $\mathrm{JC} ' 14$.

Can charm-loop contribution be the answer to the anomalies?

Problem: Charm-loop yields q^{2} - and hadronic-dependent contribution with $O_{7,9}$ structures that may mimic New Physics.

$$
C_{9 i}^{\mathrm{eff}}\left(q^{2}\right)=C_{9 \text { SMpert }}+C_{9}^{\mathrm{NP}}+\mathrm{C}_{9 i}^{c \bar{c}}\left(\mathbf{q}^{2}\right) . \quad \mathbf{i}=\perp, \|, \mathbf{0}
$$

How to disentangle? Is our long-dist $c \bar{c}$ estimate using KMPW as order of magnitude correct?
1 Fit to $C_{9}^{N P}$ bin-by-bin of $b \rightarrow s \mu \mu$ data:

- NP is universal and q^{2}-independent.
- Hadronic effect associated to $c \bar{c}$ dynamics is (likely) q^{2}-dependent.

- The excellent agreement of bins $[2,5],[4,6],[5,8]: C_{9}^{N P[2,5]}=-1.6 \pm 0.7$, $C_{9}^{N P[4,6]}=-1.3 \pm 0.4, C_{9}^{N P[5,8]}=-1.3 \pm 0.3$ shows no indication of additional q^{2} - dependence.
[Ciuchini et al.] introduced a polynomial in each amplitudes and fitted the $h_{i}^{(K)}(i=\perp, \|, 0$ and $K=0,1,2)$:

$$
A_{L, R}^{0}=A_{L, R}^{0}\left(Y\left(q^{2}\right)\right)+\frac{N}{q^{2}}\left(h_{0}^{(0)}+\frac{q^{2}}{1 G e V^{2}} h_{0}^{(1)}+\frac{q^{4}}{1 G e V^{4}} h_{0}^{(2)}\right)
$$

THIS IS A FIT to LHCb data NOT A PREDICTION!

2 Unconstrained Fit finds constant contribution similar for all helicity-amplitudes.
\rightarrow In full agreement with our global fit.
\rightarrow Problem: They interpret this constant universal contribution as of unknown hadronic origin?? Interestingly: the same constant also explains R_{K} ONLY if it is of NP origin and NOT if hadronic origin.

Constrained Fit: Imposing SM $+C_{9 i}^{c \bar{c}}$ (from KMPW) at $q^{2}<1 \mathrm{GeV}^{2}$ is highly controversial:
\rightarrow arbitrary choice that tilts the fit, inducing spurious large q^{4}-dependence.
\rightarrow fit to first bin that misses the lepton mass approximation by LHCb
\rightarrow Imposing $\left|C_{9 i}^{c \bar{c}}\right|_{\text {fitted }}=\left|C_{9 i}^{c \bar{c}}\right|_{K M P W}$, is inconsistent since $\operatorname{Im}\left[C_{9 i}^{c \bar{c}}\right]$ was not computed in KMPW!!
In [1611.04338] same authors claim that absence of large- q^{4} terms also leads to acceptable fit.

- Notice that a NP contribution to C_{7} and $C_{9} \Rightarrow$
induces ALWAYS a small q^{4} contribution because:

$$
\mathcal{C}_{i}^{\mathrm{NP}} \times F F\left(q^{2}\right)
$$

\rightarrow In [Ciuchini et al.] it is explicitly stated that q^{4} can only come from hadronic effects....

3 We repeated the fit using Frequentist and KMPW-FF comparing fits with higher-order polynomials.
Conclusion: data require constant and linear contributions in q^{2}, in agreement with KMPW.
\rightarrow no improvement in the quality of the fit by adding large- q^{4} terms (associated to $h_{\lambda}^{(2)}$) or higher-orders.
\rightarrow if $C_{9}^{\mathrm{NP}}=-1.1$ is used the fit improves substantially (more than adding 12 indep. parameters).
[Capdevila, Hofer, JM, S. Descotes; Hurth, Mahmoudi, Neshatpour]

4 LHCb also performed in [1612.06764] a measurement of phase difference between:

$$
C_{9}^{\text {eff }}=C_{9}^{\text {short distance }}+\sum \text { Breit }- \text { Wigner resonances }\left(\omega, \rho^{0}, \phi, \ldots\right)
$$

- Focus on the channel $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$. FF from lattice and extrapolated on the whole q^{2} range.
- Conclusion:
- The measured phases gives a tiny interference between short and long-distance far from their pole mass. No significant contribution of the tails of charmonia at low q^{2}. Result agrees with KMPW estimates.
- LHCb fits coupling, phases and C_{9} and $C_{10} .3 \sigma$ deviation w.r.t SM in $C_{9}-C_{10}$ plane. SM. If $C_{10}=C_{10}^{\text {SM }}$ then $C_{9}<C_{9}^{S M}$ in agreement with our fits.
- Same exercise for $B \rightarrow K^{*} \mu \mu$?

Exploring Lepton Flavour non-Universality

Observables sensitive to the difference between $b \rightarrow \boldsymbol{s} \mu \mu$ and $b \rightarrow$ see:
1 They cannot be explained by neither factorizable power corrections nor long-distance charm.
2 They share same explanation than P_{5}^{\prime} anomaly, assuming NP in e-mode is suppressed (OK with fit).

Three main types:

- Ratios of Branching Ratios [Bobeth, Hiller et al. '07,'10]:

$$
\begin{gathered}
R_{K}=\frac{\mathrm{BR}(B \rightarrow K \mu \mu)}{\mathrm{BR}(B \rightarrow K e e)} \quad R_{K^{*}}=\frac{\mathrm{BR}\left(B \rightarrow K^{*} \mu \mu\right)}{\mathrm{BR}\left(B \rightarrow K^{*} e e\right)} \\
R_{\phi}=\frac{\mathrm{BR}\left(B_{s} \rightarrow \phi \mu \mu\right)}{\mathrm{BR}\left(B_{s} \rightarrow \phi e e\right)}
\end{gathered}
$$

- Difference of Optimized observables: $Q_{i}=P_{i}^{\mu}-P_{i}^{e}$
\rightarrow Inheritate the excellent properties of optimized observables
- Ratios of coefficients of angular distribution. $B_{i}=J_{i}^{\mu} / J_{i}^{e}-1$ with $\mathrm{i}=5,6 \mathrm{~s}$.

All are useful to find deviations from SM with tiny uncertainty, but to disentangle different NP scenarios Q_{i} and B_{i} are key observables. For instance,
$C_{9 \mu}^{\mathrm{NP}}=-1.1, C_{9 e}^{\mathrm{NP}}=0$ and $C_{9 \mu}^{\mathrm{NP}}=-C_{10 \mu}^{\mathrm{NP}}=-0.65, C_{9,10 e}^{\mathrm{NP}}=0$
(Predictions for $R_{K^{*}}$ in [1701.08672])

Example-II: Q_{i} observables. Probing NP in $C_{9,10}$ with Q_{i}

SM predictions (grey boxes),
NP: $C_{9, \mu}^{\mathrm{NP}}=-1.11$ (scenario1) \& $C_{9, \mu}^{\mathrm{NP}}=-C_{10, \mu}^{\mathrm{NP}}=-0.65$ (scenario 2) with $\delta C_{i}=C_{i, \mu}-C_{i, e}$ (and $C_{i, e} \mathrm{SM}$)

$\Rightarrow Q_{2}, Q_{4} \& Q_{5}$ show distinctive signatures for the two NP scenarios considered.
■ Differences in the high- q^{2} bins of the large recoil region of $Q_{2} \& Q_{5}$ are quite significant. Lack of difference between scenario 2 and SM same reason why P_{5}^{\prime} in scenario 2 is worst than scenario 1.

- Q_{4} at very low- q^{2} (second bin) is very promising to disentangle scenario 1 from 2.

Example-II: Q_{i} observables. Probing right-handed currents (RHC) with Q_{i}

SM predictions (grey boxes),
$\mathrm{NP}: C_{9, \mu}^{\mathrm{NP}}=-1.11 \& C_{9, \mu}^{\mathrm{NP}}=-C_{10, \mu}^{\mathrm{NP}}=-0.65 \& C_{9, \mu}^{\mathrm{NP}}=-C_{9, \mu}^{\mathrm{NP}}=-1.18 \& C_{10, \mu}^{\mathrm{NP}}=C_{10, \mu}^{\mathrm{NP}}=0.38$.
with $\delta C_{i}=C_{i, \mu}-C_{i, e}\left(\right.$ and $\left.C_{i, e} \mathrm{SM}\right)$

- different systematics than LHCb (combination of channels).
- Belle has found for $\left\langle P_{5}^{\prime}\right\rangle_{[4,8]}^{\mu}$ a 2.6σ deviation while 1.3σ for $\left\langle P_{5}^{\prime}\right\rangle_{[4,8]}^{e}$
- Q_{5} points in the same direction as $C_{9 \mu}^{\mathrm{NP}}=-1.1$ scenario (in red).

More data needed for confirmation...

Example-III: $B_{5} \& B_{6 s}$ Observables (unique properties)

Idea: Combine $J_{i}^{\mu} \& J_{i}^{e}$ to build combinations sensitive to some C_{i}, with controlled sensitivitiy to long-distance charm.
Lepton mass differences generates a non-zero contribution mainly in the first bin.
\Rightarrow If on an event-by-event basis experimentalist can measure $\left\langle\boldsymbol{J}_{i}^{\mu} / \beta_{\mu}^{2}\right\rangle$:
$\left\langle\widetilde{B}_{5}\right\rangle=\frac{\left\langle J_{5}^{\mu} / \beta_{\mu}^{2}\right\rangle}{\left\langle J_{5}^{e} / \beta_{e}^{2}\right\rangle}-1\left\langle\widetilde{B}_{6 s}\right\rangle=\frac{\left\langle J_{65}^{\mu} / \beta_{\mu}^{2}\right\rangle}{\left\langle J_{6 s}^{e} / \beta_{e}^{2}\right\rangle}-1 \quad \square$ SM Predictions: $\left\langle\widetilde{B}_{i}\right\rangle=0.00 \pm 0.00$.

\widetilde{B}_{5}

$\widetilde{B}_{6 s}$

- When $\hat{s} \rightarrow 0$, $\widetilde{B}_{5}=\widetilde{B}_{6 s}=\delta C_{10} / C_{10} \Rightarrow$ Sensitivity to δC_{10} !
If β_{ℓ} removed same conclusion but a bit shifted.
- 1st Bins: Capacity to distinguish $C_{9, \mu}^{\mathrm{NP}}=-1.11$ from $C_{9, \mu}^{\mathrm{NP}}=-C_{10, \mu}^{\mathrm{NP}}=-0.65$.

■ Global point of view: We have shown that the same NP solution $C_{9, \mu}^{\mathrm{NP}}=-1.1, C_{9, e}^{\mathrm{NP}}=0$ alleviates all tensions: P_{5}^{\prime}, R_{K}, low-recoil, $B_{s} \rightarrow \phi \mu^{+} \mu^{-}, \ldots$ with a global pull-SM of 4.7σ
\rightarrow SM 'alternative explanations' are in trouble from a global point of view.
\rightarrow an experimental update of $B \rightarrow K^{*} \mu \mu$ from LHCb is of utmost importance now.
■ Local point of view (closing eyes to all deviations except P_{5}^{\prime}):

- Factorizable p.c.: We have proven that an inappropriate scheme's choice if correlations among p.c. are not considered inflates artificially the errors.
- Long-distance charm: Explicit computation by KMPW do not explain the anomaly and neither a bin-by-bin analysis nor a fit to $h_{\lambda}^{(i)}$ does not find any indication for a large unaccounted q^{4}-dep. ($\left.h_{\lambda}^{(2)} \simeq 0\right)$.

■ Different sets of ULFV observables comparing $B \rightarrow K^{*} e e \& B \rightarrow K^{*} \mu \mu$ (totally free from any long distance charm in the SM):

- Q_{i} Observables: Q_{i} ms P_{i}^{ℓ}
- C Cle linear Observables: $B_{5,6 s}, \tilde{B}_{5,6 s} \nrightarrow J_{5,6 s}$
- $R_{K^{*}}, R_{\phi}, \ldots$
can have a deep impact on the global significance of the fit and help in disentangling scenarios.
Exciting times from ULFV observables $\left(R_{K^{*}}, Q_{i}, \ldots\right)$ to come.

Back-UP slides

Criteria: An appropriate scheme is a scheme that naturally minimizes the sensitivity to power corrections in the relevant observables if you take $\triangle a_{F}$ uncorrelated.

A simple numerical example:
Evaluate P_{5}^{\prime} at $q^{2}=6 \mathrm{GeV}^{2}$ and remember that JC and DHMV takes error of p.c. UNCORRELATED:

$$
P_{5}^{\prime}\left(6 \mathrm{GeV}^{2}\right)=\left.P_{5}^{\prime}\right|_{\infty}\left(6 \mathrm{GeV}^{2}\right)\left(1+0.18 \frac{a_{A_{1}}+a_{V}-2 a_{T_{1}}}{\xi_{\perp}}-0.73 \frac{a_{A_{1}}-a_{V}}{\xi_{\perp}}+\ldots\right)
$$

Focus on the leading term and check what happens under the two schemes:

- Scheme-I (our) define $\xi_{\perp}=V \Rightarrow a_{V}=0$ then leading term has

$$
-0.73\left(\triangle a_{A_{1}}\right) / \xi_{\perp}
$$

- Scheme-II (JC) define $\xi_{\perp}=T_{1} \Rightarrow a_{T_{1}}=0$ then leading term has

$$
-0.73\left(\triangle a_{A_{1}}-\triangle a_{V}\right) / \xi_{\perp}
$$

Being uncorrelated effectively Scheme-II induces a factor 2 larger error than Scheme-I.
Already found numerically in 1407.8526.

Anyway there is a positive evolution of predictions in JC that has drastically decreased from 1412.3183:

TABLE III. Binned results in the SM for the branching fraction, the longitudinal polarization fraction F_{L} and the angular observables in the $P_{i}^{(/)}$basis (using the LHCb conventions $[45,49]$). For the electronic mode we give predictions for the bin $\left[0.0020_{-0.0008}^{+0.0008}\right.$, $1.12_{-0.06}^{+0.06}$ [91].

$\operatorname{Bin}\left[\mathrm{GeV}^{2}\right]$	$B r\left[10^{-8}\right]$	F_{L}	P_{1}	P_{2}	$P_{3}^{C P}\left[10^{-4}\right]$	P_{4}^{\prime}	P_{5}^{\prime}	P_{6}^{\prime}	P_{8}^{\prime}
$[0.1,0.98]$	$8.6_{-3.1}^{+4.5}$	$0.26_{-0.14}^{+0.21}$	$0.03_{-0.05}^{+0.06}$	$-0.175_{-0.041}^{+0.039}$	$0.2_{-0.8}^{+1.1}$	$0.19_{-0.08}^{+0.06}$	$0.56_{-0.14}^{+0.13}$	$0.04_{-0.08}^{+0.08}$	$0.00_{-0.09}^{+0.09}$
$[1.1,2]$	$3.4_{-1.5}^{+2.9}$	$0.68_{-0.23}^{+0.17}$	$0.04_{-0.11}^{+0.11}$	$-0.83_{-0.09}^{+0.16}$	$0.4_{-2.3}^{+3.4}$	$0.04_{-0.18}^{+0.16}$	$0.35_{-0.32}^{+0.30}$	$0.06_{-0.19}^{+0.19}$	$0.01_{-0.11}^{+0.11}$
$[2,3]$	$3.4_{-1.5}^{+3.4}$	$0.78_{-0.21}^{+0.13}$	$0.01_{-0.15}^{+0.12}$	$-0.84_{-0.14}^{+0.39}$	$0.4_{-2.9}^{+4.3}$	$-0.19_{-0.20}^{+0.23}$	$-0.10_{-0.42}^{+0.47}$	$0.06_{-0.27}^{+0.26}$	$0.02_{-0.09}^{+0.09}$
$[3,4]$	$3.6_{-1.8}^{+3.8}$	$0.77_{-0.24}^{+0.14}$	$-0.03_{-0.27}^{+0.27}$	$-0.21_{-0.53}^{+0.50}$	$0.3_{-2.6}^{+3.4}$	$-0.37_{-0.16}^{+0.23}$	$-0.49_{-0.36}^{+0.52}$	$0.05_{-0.28}^{+0.27}$	$0.01_{-0.06}^{+0.06}$
$[4,5]$	$4.0_{-2.1}^{+4.3}$	$0.73_{-0.28}^{+0.18}$	$-0.06_{-0.32}^{+0.34}$	$0.30_{-0.52}^{+0.35}$	$0.2_{-2.1}^{+2.3}$	$-0.45_{-0.12}^{+0.20}$	$-0.69_{-0.30}^{+0.48}$	$0.04_{-0.26}^{+0.25}$	$0.01_{-0.05}^{+0.05}$
$[5,6]$	$4.6_{-2.6}^{+5.1}$	$0.68_{-0.30}^{+0.22}$	$-0.07_{-0.38}^{+0.39}$	$0.59_{-0.40}^{+0.23}$	$0.1_{-1.6}^{+1.7}$	$-0.48_{-0.10}^{+0.17}$	$-0.80_{-0.27}^{+0.43}$	$0.03_{-0.24}^{+0.23}$	$0.01_{-0.06}^{+0.05}$
$[1.1,6]$	19_{-9}^{+19}	$0.73_{-0.25}^{+0.17}$	$-0.02_{-0.24}^{+0.23}$	$-0.10_{-0.39}^{+0.41}$	$0.3_{-1.9}^{+2.7}$	$-0.30_{-0.16}^{+0.21}$	$-0.38_{-0.34}^{+0.46}$	$0.05_{-0.25}^{+0.24}$	$0.01_{-0.05}^{+0.06}$
Electron	23_{-8}^{+10}	$0.12_{-0.07}^{+0.14}$	$0.03_{-0.05}^{+0.05}$	$-0.080_{-0.016}^{+0.017}$	$0.3_{-0.7}^{+1.0}$	$0.19_{-0.07}^{+0.06}$	$0.52_{-0.12}^{+0.12}$	$0.04_{-0.07}^{+0.07}$	$0.00_{-0.08}^{+0.08}$

to very recent predictions in 1604.04042

TABLE VI. Results of the angular analysis. The first errors of the measurement are the statistical and the second the systematic error. Observables are compared to SM predictions provided by the authors of Refs. [20, 22, 23].

q^{2} in GeV^{2} / c^{4} Observable	Measurement	DHMV	BSZ	JC	
$[0.10,4.00]$	P_{4}^{\prime}	$0.208_{-0.434}^{+0.400} \pm 0.070$	-0.026 ± 0.098	-0.029 ± 0.103	$-0.010_{-0.060}^{+0.060}$
	P_{5}^{\prime}	$0.631_{-0.419}^{+0.403} \pm 0.067$	0.175 ± 0.086	0.199 ± 0.077	$0.200_{-0.110}^{+0.110}$
	P_{6}^{\prime}	$-0.670_{-0.387}^{+0.419} \pm 0.194$	-0.055 ± 0.018	-0.056 ± 0.018	$0.040_{-0.060}^{+0.060}$
	P_{8}^{\prime}	$-0.309_{-0.472}^{+0.519} \pm 0.210$	-0.030 ± 0.017	-0.031 ± 0.016	$0.006_{-0.033}^{+0.033}$

- A separated fit to $C_{9 \mu}^{\mathrm{NP}}$ and $C_{9 e}^{\mathrm{NP}}$ including $\mathcal{B}_{B \rightarrow K e e}+$ large-recoil $B \rightarrow K^{*} e e$ observables finds:
- Preference for LFU violation with no-NP in $b \rightarrow$ see.
- Increase SM pull by $\sim+0.5 \sigma$ (from 4.2σ to 4.7σ)

Observables sensitive to the difference between $b \rightarrow s \mu \mu$ and $b \rightarrow$ see processes open a new window of clean observables.

1 They cannot be explained by neither factorizable power corrections nor long-distance charm.
2 They share same explanation than the P_{5}^{\prime} anomaly, assuming NP in electronic mode is suppressed.

Fit	$\mathcal{C}_{9}^{\mathrm{NP} \text { Bestfit }}$	1σ	Pull ${ }_{\text {SM }}$	$N_{\text {dof }}$	
All $b \rightarrow \boldsymbol{s} \mu \mu$	-1.09	[-1.29, -0.87]	4.5	95	
All $b \rightarrow \boldsymbol{s} \ell \ell, \ell=e, \mu$	-1.11	[-1.31, -0.90]	4.9	101	
All $b \rightarrow \boldsymbol{s} \mu \mu$ excl. $[5,8]$ region and also excl. R_{K}	-0.99	[-1.23, -0.75]	3.8	77	Base analysis
Only $b \rightarrow s \mu \mu$ BRs	-1.58	[-2.22, -1.07]	3.7	31	all $b \rightarrow$ s μ : $+4.5 \sigma$
Only $b \rightarrow s \mu \mu P_{i}$'s	-1.01	[-1.25, -0.73]	3.1	68	Add:
Only $B \rightarrow K^{*} \mu \mu$	-1.05	[-1.27, -0.80]	3.7	61	- electronic mode $\left(R_{K}\right):+0.4$ to 0.5σ
Only $B_{s} \rightarrow \phi \mu \mu$	-1.98	[-2.84, -1.29]	3.5	24	- excl. region [5,8]:
Only $b \rightarrow \boldsymbol{s} \mu \mu$ at large recoil	-1.30	[-1.57, -1.02]	4.0	78	-0.6 to -0.7 σ
Only $b \rightarrow s \mu \mu$ at low recoil	-0.93	[-1.23, -0.61]	2.8	21	
Only $b \rightarrow s \mu \mu$ within [1,6]	-1.30	[-1.66, -0.93]	3.4	43	
Only $B R(B \rightarrow K \ell \ell)_{[1,6]}, \ell=e, \mu$	-1.55	[-2.73, -0.81]	2.4	10	

A glimpse into the future: Wilson coefficients versus Anomalies

		R_{K}	$\left\langle P_{5}^{\prime}\right\rangle_{[4,6],[6,8]}$	$\mathcal{B}_{B_{s} \rightarrow \phi \mu \mu}$	$\mathcal{B}_{B_{s} \rightarrow \mu \mu}$	low-recoil	best-fit-point
$\mathcal{C}_{9}^{\text {NP }}$	+ -	\checkmark	\checkmark [100\%]	\checkmark		\checkmark	X
$\mathcal{C}_{10}^{N P}$	+	\checkmark	$\begin{gathered} \quad{ }^{[36 \%]} \\ \sqrt{[32 \%]}] \end{gathered}$	\checkmark	\checkmark	\checkmark	X
$\mathcal{C}_{9}{ }^{\prime}$	+ -		$\begin{gathered} {[21 \%]} \\ \sqrt{[36 \%]}] \end{gathered}$	\checkmark		\checkmark	X
$\mathcal{C}_{10^{\prime}}$	+		$\begin{gathered} \quad \sqrt{[75 \%]} \\ {[75 \%]} \end{gathered}$	\checkmark	\checkmark	\checkmark	X
But also $\mathcal{C}_{7}^{N P}, \mathcal{C}_{7}^{\prime}, \ldots$							

Table: (\checkmark) indicates that a shift in the Wilson coefficient with this sign moves the prediction in the right direction.

- $\mathcal{C}_{9}^{N P}<0$ is consistent with all anomalies. This is the reason why it gives a strong pull.
- $\mathcal{C}_{10}^{N P}, C_{9,10}^{\prime}$ fail in some anomaly. BUT
$\Rightarrow \mathcal{C}_{10}^{N P}$ is the most promising coefficient after \mathcal{C}_{9}, but not enough.
$\Rightarrow C_{9}^{\prime}, C_{10}^{\prime}$ seems quite inconsistent between the different anomalies and the global fit.
- Conspiracies among Wilson coefficients change the situation, i.e., $C_{10}-C_{10}^{\prime}>0$ is ok, both + .

