Direct search for dark matter in the mono-X final state with 13 TeV data

Alexander Madsen (DESY) on behalf of the ATLAS and CMS collaborations

Dark matter (non-)observations

Sub-atomic scale

Galaxies & clusters

Observable universe

ROTATIONAL CURVES VELOCITY DISPERSION GRAVITATIONAL LENSING

PRODUCTION
ANNIHILATION
SCATTERING

LARGE SCALE STRUCTURES, COSMIC MICROWAVE BACKGROUND

Weak interaction?

Gravitational interaction

OBSERVED

Dark Matter Searches at the LHC using Mono-X

- Astrophysical evidence that
 Dark Matter (DM) exists and is
 >5x more abundant in the
 universe than ordinary matter.

 Its nature is unknown.
- A DM sector largely composed of Weakly Interacting Massive Particles (WIMPs) is well motivated and facilitates comparison of results between three areas of research.
- The LHC may be able to produce DM particles.

Dark Matter Searches at the LHC using Mono-X

- Astrophysical evidence that Dark Matter (DM) exists and is >5x more abundant in the universe than ordinary matter. Its nature is unknown.
- A DM sector largely composed of Weakly Interacting Massive Particles (WIMPs) is well motivated and facilitates comparison of results between three areas of research.
- The LHC may be able to produce DM particles but ATLAS and CMS can not detect them.

We need a SM particle recoiling against the invisible DM.

ATLAS & CMS Mono-X searches @ 13 TeV

SM particle	signature	смѕ	ATLAS		
Gluon	narrow jet		PRD 94 (2016) 032005		
W	- wide jet	arXiv:1703.01651	Phys. Lett. B 763 (2016)		
Z	dilepton	CMS PAS EXO-16-038	ATLAS-CONF-2016-056		
Photon	photon	CMS PAS EXO-16-039	JHEP 06 (2016) 059 Apr 2016*)		
Higgs	diphoton	CMS PAS EXO-16-011	ATLAS-CONF-2016-056		
	bb (resolved)	CMS PAS EXO-16-012	Phys. Lett. B 765 (2017)		
	bb (merged)	CMS PAS EXU-10-012			
	4 leptons		ATLAS-CONF-2015-059		
b	1 b-jet	CMS PAS-B2G-15-007			
bb	2 b-jets	CMS PAS-B2G-13-007	ATLAS-CONF-2016-086		
t	wide jet	CMS PAS-EXO-16-040			
tt	all-hadronic	CMC DAG EVO 16 005	ATLAS-CONF-2016-077		
	semi-leptonic	CMS PAS-EXO-16-005	ATLAS-CONF-2016-050		
	dileptonic	CMS PAS-EXO-16-028	ATLAS-CONF-2016-076		

2-3 fb⁻¹
13 fb⁻¹
*) Updated with 36 fb⁻¹

Interpretations of Mono-X results

Effective Field Theory (EFT)

- Commonly used for interpretations of Run 1 results.
- The SM-DM mediator is integrated out.
- Two parameters: DM mass and effective energy scale.
- Valid only when momentum transfer << mediator mass.
- Restricted range of validity at the LHC, more so in Run 2.

Simplified Models

- Focus of Run 2 searches.
- One DM and one new mediator on top of the Standard Model.
- Multiple parameters:
 - DM mass
 - Mediator mass and width
 - Mediator SM coupling
 - Mediator DM coupling
- Benchmark parameter choices recommended by LHC DM Forum and LHC DM Working Group (arXiv:1507.00966, arXiv:1603.04156).

Mono-jet

Precise background modelling needed - achieved through normalization of simulated samples in control regions.

Crucially, **γ+jets** (CMS) and **W+jets** (ATLAS & CMS) events are used to constrain the **dominant and irreducible Z**⇒**vv+jets background**.

Compared to Zoll control regions alone, this strategy benefits from higher statistics, which is paid for with modeling uncertainties from PDF, scale choices, EW corrections...

No excess observed ⇒ signal exclusion limits obtained from simultaneous fit to signal and control regions in bins of E_T with independent background normalizations.

ATLAS limits on axial vector mediator with g_a =0.25, g_{χ} =1.0

Mono-W/Z

Mono-W/Z (hadronic)

Hadronically decaying, highly boosted W or Z boson, reconstructed as a single wide-R jet.

(Mono-Z in the dilepton final state is also searched for, but not shown here.)

Mono-W/Z (hadronic)

Vector boson tagging using jet mass and substructure information is a key tool here.

Uniquely, this channel allows us to probe for a **VVXX contact interaction**.

The **tagging efficiency is a major source of uncertainty** with 5-15% effect on
signal yield.

Mono-Jet and -W/Z (hadronic) in CMS

The two channels are very similar - CMS treats them both in a single analysis

Mono-Jet and -W/Z (hadronic) in CMS

Vector and axial-vector mediators excluded up to 1.95 TeV.

Mono-Jet and -W/Z (hadronic) in CMS

Mono-photon offers **clean events with low background**. Similar to mono-Z/W, we can probe for a **yyXX contact interaction** in addition to the simplified models.

Fake photon backgrounds are estimated using data driven methods. Z/W/jet+photon backgrounds are taken from simulations, normalized in control regions (2e and 2μ , 1μ , inverted γ /jet separation) by ATLAS.

The **ATLAS** mono-photon analysis has been updated to the full 2015+2016 dataset (to appear on arXiv soon).

New in this version is bins of E_T^{miss} with independent background normalizations and an updated event selection making use of a minimum cut on $E_T^{miss}/\sqrt{(\sum E_T)}$ due to high pileup in 2016 degrading the E_T^{miss} performance.

With 36 fb⁻¹, the sensitivity is still limited by statistics, but systematic uncertainties are also important. In particular on hadronic **jets faking photons**, contributing 1.3-5.3% uncertainty on the total background yield.

<u>γγΧΧ Contact Interaction</u> unique measurement in this channel

The EFT is not always valid!

"Truncation" results show the effect of recomputing the limit after removing events with too large center-of-mass energy at different ETF coupling strengths.

Mono-Higgs

Mono-H (bb)

Higgs ISR is Yukawa suppressed, instead H can be emitted by the mediator itself - direct test of the SM-DM coupling structure.

Mono-H (bb)

The bb decay channel is the most sensitive due to the large branching fraction.

Event categories with **two resolved jets or a single merged jet** (depending on the Higgs boost) are both considered.

Diphoton channel offers clean event selection with very few background events at high E_T^{miss} after mass requirements.

ATLAS has also analyzed the DM + 4 lepton final state as part of the SM cross section measurement, but it suffers from low statistics.

Mono-H (bb)

Signal extraction is performed in bins of E_T^{miss} . ATLAS fits the invariant mass distribution in each E_T^{miss} bin.

Main systematic is b-tagging efficiency, but with with 3 fb⁻¹ the analysis is **limited by statistics**.

DM+HF

DM + Heavy Flavor

Yukawa couplings to quarks are expected for scalar mediators

⇒ study production in association with heavy flavor!

DM + top quark(s)

Both experiments analyze E_T^{miss} + tt production in the fully hadronic, semi-leptonic, and dileptonic final states. The fully hadronic final state is the most sensitive to scalar mediators. Top tagging of large-R jets is employed.

CMS has also searched for a single boosted top quark that could be produced with a FCNC mediator.

DM + Heavy Flavor

Conclusions

- In Run-2, focus is on simplified models.
 - Allows comparison with other DM searches and with relic density constraints.
- Mono-X final states are sensitive to DM production at the LHC. Several searches in 13 TeV data performed by ATLAS and CMS.
 - No significant excesses seen.
 - DM exclusions are complementary to direct detection experiments.

Bonus

Mono-photon limits on Zy resonance

Mono-H(bb) limit on Z'+2HDM

Spin-0 mediator exclusions by CMS

150

200

250

300 350 400 450 500

Mono-Jet background normalizations

	ATLAS		CMS					
	1e	1μ	2m	1e	1μ	2e	2μ	1γ
Z⇒vv+jets		✓		✓	✓	✓	✓	✓
Z¤µµ+jets			✓	1	✓	1	✓	✓
Z⇒ee+jets				1	✓	1	✓	✓
Z⇒ττ+jets	1			✓	✓	✓	✓	✓
W⇒µv+jets		✓		✓	✓			
W⇔ev+jets	✓			✓	✓			
W≎τv+jets	✓			✓	✓			

Mono-H(bb) background normalizations

	CMS (resolved)	CMS (boosted)	ATLAS	
Z+jets	Mass s	Mass shape fit and 2I CR		
W+jets	1I+0j CR	1I CR	1mu CR	
Тор	1I+1j CR	II CR		

XENON(1/n)T Sensitivity

See talk by T. Marrodan Undagoitia in VHEPU session

DARWIN Sensitivity

DARWIN, JCAP 1611 (2016) no.11, 017, arXiv:1606.07001