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In the first part of the talk I present the results of a global fit to neutrino oscillation data fo-
cusing on the standard three-flavour scenario. The determination of all oscillation parameters
is presented and I comment on the status of the CP phase, for which current data indicates
a preference of the range π . δCP . 2π over 0 . δCP . π. Furthermore I discuss the issue
of normal versus inverted mass ordering which are degenerate at the 1σ level in our global
fit. I comment also on the possibility to use cosmological data to disfavour the inverted mass
ordering, arguing that using current data this is not significant. In the last part I discuss the
possible presence of non-standard neutrino interactions. If new interaction of similar size as
weak interactions are allowed, the so-called LMA-dark solution appears. It corresponds to an
exact degeneracy in the neutrino evolution, which leads to a generalized mass ordering degen-
eracy and makes the determination of the neutrino mass ordering with oscillation experiments
impossible. The only way to break this degeneracy is by using non-oscillation observables, for
instance neutrino scattering data at low energy.

1 Three-flavour oscillations

Thanks to remarkable results of many neutrino oscillation experiments we have now a rather
clear picture of the three-flavour leptonic mixing matrix and the ordering of the neutrino mass
states has been narrowed down to two possibilities, called normal and inverted orderings. The
present status of the standard 3-flavour oscillation scenario is summarized in Fig. 1, where we
show the results of a global fit in terms of the two mass squared-differences, the three mixing
angles, and the complex phase relevant for neutrino oscillations. Those results correspond to
NuFit-3.0 1, where a precise definition of the parameters as well as a description of the used
data can be found. Tables with χ2 data are available at the NuFit website 2, where also future
updates will be published.

Defining the 3σ relative precision of a parameter by 2(xup − xlow)/(xup + xlow), where xup

(xlow) is the upper (lower) bound on a parameter x at the 3σ level, we read 3σ relative precision
of 14% (θ12), 32% (θ23), 11% (θ13), 14% (∆m2

21) and 9% (|∆m2
3`|) for the various oscillation
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Figure 2. Global 3⌫ oscillation analysis. The red (blue) curves correspond to Normal (Inverted)

Ordering. The normalization of reactor fluxes is left free and data from short-baseline reactor

experiments are included. Note that as atmospheric mass-squared splitting we use �m2
31 for NO

and �m2
32 for IO.
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•well determined 
parameters 
 
θ12 θ13 Δm

2
21 |Δm

2
31| 

 

open issues:

•θ23: octant/maximality

•mass ordering

•δCP : preference for 
180° < δCP < 360°

3-flavour mixing - global fit as of fall 2016

NuFIT 3.0, Esteban et al., 1611.01514 www.nu-fit.org

open issues:

Figure 1 – Global fit results from NuFit-3.0 1,2. We show the 1-dimensional ∆χ2 projections for the various
parameters on the horizontal axes. Red (blue) curves are for the normal (inverted) mass ordering.

parameters. We observe that for θ23 the uncertainty is still relatively large and there is the
ambiguity of first octant/maximal mixing/second octant.

1.1 Leptonic CP violation

A nontrivial value of the complex phase in the lepton mixing matrix leads to differences of the
vacuum transition probabilities for neutrinos and antineutrinos. The effect is proportional to
the Jarlskog invariant which gives a convention-independent measure of CP violation 3:

=
[
UαiU

∗
αjU

∗
βiUβj

]
≡ Jmax

CP sin δ = cos θ12 sin θ12 cos θ23 sin θ23 cos2 θ13 sin θ13 sin δ (1)

where we have used the standard parametrization of the mixing matrix in terms of angles and
the Dirac complex phase. Thus the determination of the mixing angles yields at present a
maximum allowed CP violation of

Jmax
CP = 0.0329± 0.0007 (+0.0021

−0.0024) (2)

at 1σ (3σ) for both orderings. Comparing this result with the size of the Jarlskog invariant in

the quark sector 4, Jquarks
CP = (3.04+0.21

−0.20) × 10−5, we observe that leptonic CP violation can be
potentially 3 orders of magnitude larger than for quarks.

As visible in the lower right panel of Fig. 1, current data favours values of π . δCP . 2π
compared to the range 0 . δCP . π. The best fit value is at δCP ≈ 3π/2, CP conservation (i.e.,
δCP = 0 or π) is allowed at 70% CL for normal ordering and 97% CL for inverted ordering,
and δCP ≈ π/2 is disfavoured with ∆χ2 ≈ 6 (14) for normal (inverted) ordering. The preference
for non-zero δCP implies a best fit value Jbest

CP = −0.033. Fig. 2 shows that there is significant
correlation between δCP and the mixing angle θ23.

The current indication for δCP ≈ 3π/2 is driven mostly by T2K data 5. It happens that
both neutrino and antineutrino event numbers feature a statistical fluctuation in the “right”
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CP phase from present data

•best fit at δCP ≈ 270°

• correlations with θ23

•CP conservation allowed at 70% CL (NO), 97% CL (IO)

•δCP ≈ 90° disfavoured with Δ!2
 ≈ 6 (14) for NO (IO)
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Figure 10. Allowed regions from the global data at 1�, 90%, 2�, 99% and 3� CL (2 dof). We

show projections onto di↵erent planes with �CP on the vertical axis after minimizing with respect

to all undisplayed parameters. The lower (upper) panels correspond to IO (NO). Contour regions

are derived with respect to the global minimum which occurs for NO and is indicated by a star.

The local minimum for IO is shown by a black dot.

• Regarding ✓23, its precision is dominated by ⌫µ disappearance experiments. Since

the relevant survival probability depends dominantly on sin2 2✓23, there is both a

physical boundary of their parameter space at ✓23 = 45� (because sin 2✓23 < 1), as

well as a degeneracy related to the octant.

• The mass ordering is a discrete parameter.

• The dependence of the theoretical predictions on �CP is significantly non-linear, even

more considering the periodic nature of this parameter. Furthermore, there are com-

plicated correlations and degeneracies between �CP, ✓23, and the mass ordering (see

Fig. 10 for illustration).

Therefore, one may expect deviations from the Gaussian limit of the ��2 distributions,

and confidence levels for these parameters should be cross checked through a Monte Carlo

simulation of the relevant experiments. We consider in the following the combination of
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Figure 2. Global 3⌫ oscillation analysis. The red (blue) curves correspond to Normal (Inverted)

Ordering. The normalization of reactor fluxes is left free and data from short-baseline reactor
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Figure 2. Global 3⌫ oscillation analysis. The red (blue) curves correspond to Normal (Inverted)

Ordering. The normalization of reactor fluxes is left free and data from short-baseline reactor

experiments are included. Note that as atmospheric mass-squared splitting we use �m2
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Figure 11. Allowed regions from the global data at 1�, 90%, 2�, 99% and 3� CL (2 dof). We

show projections onto di↵erent planes with �CP on the vertical axis after minimizing with respect

to all undisplayed parameters. The lower (upper) panels correspond to IO (NO). Contour regions

are derived with respect to the global minimum which occurs for NO and is indicated by a star.

The local minimum for IO is shown by a black dot.

physical boundary of their parameter space at ✓23 = 45� (because sin 2✓23 < 1), as

well as a degeneracy related to the octant.

• The mass ordering is a discrete parameter.

• The dependence of the theoretical predictions on �CP is significantly non-linear, even

more considering the periodic nature of this parameter. Furthermore, there are com-

plicated correlations and degeneracies between �CP, ✓23, and the mass ordering (see

Fig. 11 for illustration).

Therefore, one may expect deviations from the Gaussian limit of the ��2 distributions,

and confidence levels for these parameters should be cross checked through a Monte Carlo

simulation of the relevant experiments. We consider in the following the combination of

the T2K, NO⌫A, MINOS and Daya-Bay experiments, which are most relevant for the

parameters we are interested in this section. For a given point of assumed true values for
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Figure 11. Allowed regions from the global data at 1�, 90%, 2�, 99% and 3� CL (2 dof). We
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to all undisplayed parameters. The lower (upper) panels correspond to IO (NO). Contour regions

are derived with respect to the global minimum which occurs for NO and is indicated by a star.

The local minimum for IO is shown by a black dot.
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Figure 2 – Global fit results from NuFit-3.0 1,2 projected onto the plane of δCP and sin2 θ23 for normal (left) and
inverted (right) mass ordering. The different contours correspond to 1σ, 90%, 2σ, 99%, 3σ CL (2 dof). Regions
for IO are shown with respect to the global best fit point, which happens for NO and is indicated by the star.

δCP,true NO/2nd Oct. IO/1st Oct. IO/2nd Oct.

0◦ 62% 91% 28%
180◦ 56% 89% 32%
270◦ 70% 83% 27%

Gaussian 72% 94% 46%

Table 1: CL for the rejection of various combinations of mass ordering and θ23 octant with respect to the global
best fit (which happens for NO and 1st octant). We quote the CL of the local minima for each ordering/octant
combination, assuming three example values for the true value of δCP as well as for the Gaussian approximation
(last row). Resuts taken from 1.

direction. While fully consistent within statistical uncertainties, it may happen, however, that
the significance for δCP will grow slower than the square-root of the exposure.

1.2 Neutrino mass ordering

The discrimination of normal ordering (NO) versus inverted ordering (IO) is one of the major
open tasks for neutrino oscillation experiments. We observe from Fig. 1 that the fits of the two
orderings are essentially degenerate for present data, with ∆χ2 ≈ 1. As visible in the lower left
panel, the sensitivity to the mass ordering is entangled with the octant of θ23. In Tab. 1 we
show the CL at which a certain combination of mass ordering and θ23 octant can be excluded
with respect to the global minimum, which occurs for NO and the 1st θ23 octant. The CL has
been determined by performing a Monte Carlo simulation to obtain the distribution of the ∆χ2

statistic numerically 1, see also 6. We observe that the CL of the second octant for NO shows
relatively large deviations from Gaussianity and dependence on the true value of δCP. In any
case, the sensitivity is very low and the 2nd octant can be reject at most at 70% CL (1σ) for all
values of δCP. The first octant for IO can be excluded at between 83% and 91% CL, depending
on δCP. The exclusion of the IO/2nd octant case corresponds also to the exclusion of the IO,
since at that point the confidence interval in IO would vanish. Also in this case we observe
deviations from the Gaussian approximation and the CL of at best 32% is clearly less than 1σ,
showing that the considered data set has essentially no sensitivity to the mass ordering.
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We note that the SuperKamiokande collaboration reports 7 a preliminary hint from atmo-
spheric neutrino data in favour of the NO with ∆χ2 ≈ 4.3. Unfortunately with the public
available information it is not possible to reproduce this result outside the collaboration and
therefore these data cannot be included in the global fit.

Some information on the mass ordering can be obtained also from observables sensitive to
the absolute neutrino mass. Here we briefly mention the information coming from cosmology,
which is sensitive to the sum of the neutrino masses, Σ. For a vanishing lightest neutrino mass
(m0 = 0), the predictions for the sum are (1σ uncertainties)

Σ =

{
58.5± 0.48 meV (NO)
98.6± 0.85 meV (IO)

(m0 = 0) . (3)

Hence, if cosmological observations provide a determination of Σ significantly below 0.098 eV,
the inverted mass ordering would be disfavoured.a Recent data from Planck CMB observations
combined with baryonic acoustic oscillations (BAO) and other observations lead to the bound
Σ < 0.23 eV at 95% CL (PlanckTT + lowP + lensing + BAO + JLA + H0), see 8 for details.
Depending on the used data and variations in the analysis, different authors obtain upper bounds
from current data approaching the “critical” value of 0.1 eV. In Ref. 9 we have adopted a
particular combination of data which leads to an upper bound of 0.14 eV at 95% CL.

As illustrated in the left panel of Fig. 3, we see that both orderings are well compatible with
such a bound. In Ref. 9 we propose a statistical method to quantify this statement, based on
Bayesian model selection. In this framework, the posterior odds of NO versus IO are obtained
as the ratio of the area under the likelihood curves shown in the right panel of Fig. 3, assuming
a flat prior on the lightest neutrino mass. We find that present data leads to posterior odds of
about 3:2 in favour of NO. In order to obtain a significant rejection of IO from cosmology, a
sensitivity to Σ better than 0.02 eV (1σ) is needed. Such a sensitivity could be achieved by 2
years of data from the EUCLID project, see Ref. 9 for a simulation. Comparing this sensitivity
with the values given in Eq. (3), we see that with such a sensitivity a 3σ evidence for a non-zero
Σ will be obtained even for NO with vanishing lightest neutrino mass.

2 Beyond three-flavour: non-standard neutrino interactions

The three-flavour neutrino paradigm is well established and most new-physics scenarios lead
to small perturbation of the standard picture. One example for this statement are light sterile

aNote that cosmology can only exclude IO but cannot favour IO over NO.
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NSI constraints from oscillation data

• limits of few %, 

•exceptions: εeτ, εee-εμμ

90% CL 3�

Param. best-fit LMA LMA � LMA-D LMA LMA � LMA-D

"uee � "uµµ +0.298 [+0.00, +0.51] � [�1.19,�0.81] [�0.09, +0.71] � [�1.40,�0.68]

"u⌧⌧ � "uµµ +0.001 [�0.01, +0.03] [�0.03, +0.03] [�0.03, +0.20] [�0.19, +0.20]

"ueµ �0.021 [�0.09, +0.04] [�0.09, +0.10] [�0.16, +0.11] [�0.16, +0.17]

"ue⌧ +0.021 [�0.14, +0.14] [�0.15, +0.14] [�0.40, +0.30] [�0.40, +0.40]

"uµ⌧ �0.001 [�0.01, +0.01] [�0.01, +0.01] [�0.03, +0.03] [�0.03, +0.03]

"uD �0.140 [�0.24,�0.01] � [+0.40, +0.58] [�0.34, +0.04] � [+0.34, +0.67]

"uN �0.030 [�0.14, +0.13] [�0.15, +0.13] [�0.29, +0.21] [�0.29, +0.21]

"dee � "dµµ +0.310 [+0.02, +0.51] � [�1.17,�1.03] [�0.10, +0.71] � [�1.44,�0.87]

"d⌧⌧ � "dµµ +0.001 [�0.01, +0.03] [�0.01, +0.03] [�0.03, +0.19] [�0.16, +0.19]

"deµ �0.023 [�0.09, +0.04] [�0.09, +0.08] [�0.16, +0.11] [�0.16, +0.17]

"de⌧ +0.023 [�0.13, +0.14] [�0.13, +0.14] [�0.38, +0.29] [�0.38, +0.35]

"dµ⌧ �0.001 [�0.01, +0.01] [�0.01, +0.01] [�0.03, +0.03] [�0.03, +0.03]

"dD �0.145 [�0.25,�0.02] � [+0.49, +0.57] [�0.34, +0.05] � [+0.42, +0.70]

"dN �0.036 [�0.14, +0.12] [�0.14, +0.12] [�0.28, +0.21] [�0.28, +0.21]

Table 1. 90% and 3� allowed ranges for the matter potential parameters "f
↵� for f = u, d as

obtained from the global analysis of oscillation data. The results are obtained after marginalizing

over oscillation and the other matter potential parameters either within the LMA only and within

either LMA or LMA-D subspaces respectively. The numbers quoted are the SNO-poly variant of

the solar analysis. See text for details.

5 Summary

In this article we have quantified our current knowledge of the size and flavor structure of the

matter background e↵ects in the evolution of solar, atmospheric, reactor and LBL neutrinos

based solely on a global analysis of oscillation data. It complements the study in Ref. [54]

where the analysis of the matter potential was perform only considering atmospheric and

LBL neutrinos.

After briefly presenting the most general parametrization of the matter potential and

its connection with non-standard neutrino interactions (NSI), we have focused on the anal-

ysis of solar and KamLAND data. We have found (see Fig. 2) that the fit always prefers

some non-standard value of the matter potential parameters, while the SM potential lies at

a ��2 ⇠ 5–8 depending on the details of the analysis. This is consequence of the fact that

none of the experiments sensitive to 8B neutrinos has provided so far evidence of the low

energy turn-up of the spectrum predicted in the standard LMA MSW solution (see Fig. 3).

We have also found in that the present analysis still allows for two disconnected regions in

the parameter space, the “standard” LMA region and the “dark side” LMA-D (see Fig. 1),

and that the statistical di↵erence between both solutions never exceeds ��2 = 1.4. Al-

though the LMA-D solution requires rather large values of the matter parameters, we have

shown (and latter quantified in Sec. 4) that it is still fully compatible with the bounds from

atmospheric and LBL oscillation data.

– 17 –

90% CL 3�

Param. best-fit LMA LMA � LMA-D LMA LMA � LMA-D

"uee � "uµµ +0.298 [+0.00, +0.51] � [�1.19,�0.81] [�0.09, +0.71] � [�1.40,�0.68]

"u⌧⌧ � "uµµ +0.001 [�0.01, +0.03] [�0.03, +0.03] [�0.03, +0.20] [�0.19, +0.20]

"ueµ �0.021 [�0.09, +0.04] [�0.09, +0.10] [�0.16, +0.11] [�0.16, +0.17]

"ue⌧ +0.021 [�0.14, +0.14] [�0.15, +0.14] [�0.40, +0.30] [�0.40, +0.40]

"uµ⌧ �0.001 [�0.01, +0.01] [�0.01, +0.01] [�0.03, +0.03] [�0.03, +0.03]

"uD �0.140 [�0.24,�0.01] � [+0.40, +0.58] [�0.34, +0.04] � [+0.34, +0.67]

"uN �0.030 [�0.14, +0.13] [�0.15, +0.13] [�0.29, +0.21] [�0.29, +0.21]

"dee � "dµµ +0.310 [+0.02, +0.51] � [�1.17,�1.03] [�0.10, +0.71] � [�1.44,�0.87]

"d⌧⌧ � "dµµ +0.001 [�0.01, +0.03] [�0.01, +0.03] [�0.03, +0.19] [�0.16, +0.19]

"deµ �0.023 [�0.09, +0.04] [�0.09, +0.08] [�0.16, +0.11] [�0.16, +0.17]

"de⌧ +0.023 [�0.13, +0.14] [�0.13, +0.14] [�0.38, +0.29] [�0.38, +0.35]

"dµ⌧ �0.001 [�0.01, +0.01] [�0.01, +0.01] [�0.03, +0.03] [�0.03, +0.03]

"dD �0.145 [�0.25,�0.02] � [+0.49, +0.57] [�0.34, +0.05] � [+0.42, +0.70]

"dN �0.036 [�0.14, +0.12] [�0.14, +0.12] [�0.28, +0.21] [�0.28, +0.21]

Table 1. 90% and 3� allowed ranges for the matter potential parameters "f
↵� for f = u, d as

obtained from the global analysis of oscillation data. The results are obtained after marginalizing

over oscillation and the other matter potential parameters either within the LMA only and within

either LMA or LMA-D subspaces respectively. The numbers quoted are the SNO-poly variant of

the solar analysis. See text for details.

5 Summary

In this article we have quantified our current knowledge of the size and flavor structure of the

matter background e↵ects in the evolution of solar, atmospheric, reactor and LBL neutrinos

based solely on a global analysis of oscillation data. It complements the study in Ref. [54]

where the analysis of the matter potential was perform only considering atmospheric and

LBL neutrinos.

After briefly presenting the most general parametrization of the matter potential and

its connection with non-standard neutrino interactions (NSI), we have focused on the anal-

ysis of solar and KamLAND data. We have found (see Fig. 2) that the fit always prefers

some non-standard value of the matter potential parameters, while the SM potential lies at

a ��2 ⇠ 5–8 depending on the details of the analysis. This is consequence of the fact that

none of the experiments sensitive to 8B neutrinos has provided so far evidence of the low

energy turn-up of the spectrum predicted in the standard LMA MSW solution (see Fig. 3).

We have also found in that the present analysis still allows for two disconnected regions in

the parameter space, the “standard” LMA region and the “dark side” LMA-D (see Fig. 1),

and that the statistical di↵erence between both solutions never exceeds ��2 = 1.4. Al-

though the LMA-D solution requires rather large values of the matter parameters, we have

shown (and latter quantified in Sec. 4) that it is still fully compatible with the bounds from

atmospheric and LBL oscillation data.

– 17 –

Gonzalez-Garcia, Maltoni, 1307.3092

0

5

10

15

20

∆
χ

2

f=u

-2 -1 0 1

ε
f

ee
− ε

f

µµ

0

5

10

15

20

∆
χ

2

-0.25 0 0.25

ε
f

ττ
− ε

f

µµ

-0.2 0 0.2

ε
f

eµ

-0.5 0 0.5

ε
f

eτ

-0.05 0 0.05

ε
f

µτ

f=d

SNO-DATA

LMA
SNO-POLY

LMA
SNO-DATA

LMA-D
SNO-POLY

LMA-D

Figure 6. Dependence of the ��2 function for the global analysis of solar, atmospheric, reactor

and LBL data on the NSI parameters "f
↵� for f = u (upper panels) and f = d (lower panels), for

both LMA and LMA-D regions and the two variants of the SNO analysis, as labeled in the figure.

ter potential parameters "fD and "fN relevant in the propagation of solar and KamLAND

neutrinos. In both figures we display separately the results of the marginalization in the

LMA and the LMA-D regions of the parameter space, as well as both the SNO-data and

SNO-poly variants of the solar analysis. From these figures we derive the 90% and 3�

allowed ranges for the NSI parameters implied by the global analysis, which we summarize

in Table 1. The results in this table correspond to the SNO-poly analysis and have been

obtained for real matter potential parameters. As discussed in Sec. 2, in such a case only

the relative sign of the various "f↵ 6=� and the vacuum mixing angles can be determined by

oscillations. Thus strictly speaking once the results are marginalized with respect to all

other parameters in the most general parameter space, the oscillation analysis can only

provide bounds on |"f↵ 6=� |. Still, for the sake of completeness we have decided to retain

in Table 1 the signs of the non-diagonal "f↵ 6=� , which is correct as long as such signs are

understood to be relative vacuum-matter quantities and not intrinsic NSI features.

Neutrino scattering experiments such as CHARM [94, 95], CDHSW [96] and NuTeV [97]

are sensitive to NSI with u and d, and can therefore yield information on "f↵� [98]. In

Ref. [73] it was found that the combination with CHARM scattering results [94, 95] for

f = d substantially lifts the statistical di↵erence between LMA and LMA-D. Although a

rigorous combined analysis of the oscillation results presented here with those from scatter-
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Figure 4 – On the left we show the ∆χ2 as a function of εuee− εuµµ (upper panel) and εdee− εdµµ (lower panel). The
blue curves correspond to θ12 < 45◦ and the red curves to θ12 > 45◦ (the so-called LMA-dark solution), taken
from Ref. 13. On the right we show the four possible orderings of the neutrino mass states, corresponding to the
generalized neutrino mass ordering degeneracy 15.

neutrinos10. Here we comment on an exception to the above statement, a particular new-physics
scenario where actually order-one modifications of standard physics are still allowed by data,
namely so-called non-standard neutrino interactions (NSI).

We consider the presence of neutral-current (NC) NSI in the form of dimension-6 four-fermion
operators, for recent reviews see e.g. 11. NSI are described by the Lagrangian

LNSI = −2
√

2GF ε
f
αβ(ναLγ

µνβL)(fγµf) , (4)

where, α, β = e, µ, τ , and f denotes a fermion present in the background medium. The parameter
εfαβ parametrizes the strength of the new interaction with respect to the Fermi constant GF .

Hermiticity requires that εfαβ = (εfβα)∗. Note that we restrict to vector interactions, since we are

interested in the contribution of NSI to the effective matter potential 12.

A comprehensive study of the allowed values for NSI has been preformed in Ref.13. Typically
the values of εfαβ have to be less than few percent, with two exceptions: (i) for εfeτ the limits are
around 0.14 (90% CL), and (ii) for the combination εuee − εuµµ there are actually two degenerate
solutions. The best fit solution corresponds approximately to εuee − εuµµ ≈ 0.3 (see Fig. 4, left,
blue curves). This relatively large value is driven by a 2σ tension in the solar neutrino spectrum
measured at SuperKamiokande and SNO. In the presence of NSI of this size, the low-energy part
of the spectrum can be better fitted to the data, which currently do not yet follow the predicted
up-turn of the standard MSW solution.

However, in addition, there is a second quasi-degenerate solution (Fig. 4, left, red curves)
with εuee − εuµµ ≈ −1 and the solar mixing angle in the second octant, θ12 > 45◦, the so-called
LMA-dark solution 14. As discussed in 15 (see also 13,16) this degeneracy is a manifestation of a
general symmetry: as a consequence of the CPT symmetry, neutrino evolution is invariant if the
corresponding Hamiltonian is transformed as H → −H∗. This transformation can be realised
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Figure 5 – Allowed regions (sensitivity) in the plane of εuee and εuµµ from the COHERENT experiment 19 under
the assumption of no NSI in the data, overlayed with the presently allowed regions from the global oscillation
analysis. The two diagonal shaded bands correspond to the LMA and LMA-dark regions as indicated, at 1, 2,
3σ. The dashed lines indicate the values of NSI parameters for which COHERENT would not be able to resolve
the LMA-dark degeneracy. Plot from Ref. 17.

by changing the oscillation parameters as

∆m2
31 → −∆m2

31 + ∆m2
21 = −∆m2

32 ,
sin θ12 ↔ cos θ12 ,
δ → π − δ ,

(5)

and simultaneously transforming the NSI parameters as

(εee − εµµ)→ −(εee − εµµ)− 2 ,
(εττ − εµµ)→ −(εττ − εµµ) ,
εαβ → −ε∗αβ (α 6= β) ,

(6)

In Eq. (5), δ is the leptonic Dirac CP phase, and we are using here the parameterization con-
ventions from Ref. 15. In Eq. (6) we take into account explicitly that oscillation data are only
sensitive to differences in the diagonal elements of the Hamiltonian. Eq. (5) shows that this
degeneracy implies a change in the octant of θ12, i.e., the LMA-dark solution, as well as a
change in the neutrino mass ordering, i.e., the sign of ∆m2

31. For that reason it has been called
“generalized mass ordering degeneracy” in Ref. 15.

The corresponding mass spectra are illustrated in Fig. 4, right. The spectra based on large
NSI feature “flipped” solar mass states (corresponding to θ12 > 45◦). Since the degeneracy
is an exact symmetry of the Hamiltonian for any arbitrary matter profile, the flipped spectra
are indistinguishable from the standard ones by any combination of oscillation experiments.
Hence, if one allows for the presence of large NSI, the determination of the mass ordering
with oscillation experiments becomes impossible. The only way to resolve this degeneracy is
by using non-oscillation observables, for instance experiments measuring the neutrino–quark
neutral-current scattering cross section 15. In order to fully exclude the degenerate solution,
data on the νe as well as νµ cross section are required. A combined analysis of scattering and
oscillation data has been performed in Ref. 17.

In generic models of new physics NSI parameters are expected to be small. However, ex-
amples of viable gauge models leading to εu,dαβ ∼ O(1) can be found in 18. Typically such large
NSI can be achieved by assuming light mediator particles. This has important consequences for
scattering experiments, since if the momentum transfer in the experiment is much larger than
the mediator mass, the effect will be suppressed. Hence, the preferred configuration to constrain



NSI are low-energy scattering experiments, such as for instance coherent neutrino–nucleon scat-
tering experiments. In Ref. 17 we have shown that such an experiment performed at a stopped
pion source will either rule out the NSI-based degeneracy or discover non-zero NSI, see Fig. 5.
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