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Figure 2. Global 3⌫ oscillation analysis. The red (blue) curves correspond to Normal (Inverted)
Ordering. The normalization of reactor fluxes is left free and data from short-baseline reactor
experiments are included. Note that as atmospheric mass-squared splitting we use �m

2
31 for NO

and �m

2
32 for IO.
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Figure 2. Global 3⌫ oscillation analysis. The red (blue) curves correspond to Normal (Inverted)
Ordering. The normalization of reactor fluxes is left free and data from short-baseline reactor
experiments are included. Note that as atmospheric mass-squared splitting we use �m

2
31 for NO

and �m

2
32 for IO.
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Figure 2. Global 3⌫ oscillation analysis. The red (blue) curves correspond to Normal (Inverted)
Ordering. The normalization of reactor fluxes is left free and data from short-baseline reactor
experiments are included. Note that as atmospheric mass-squared splitting we use �m

2
31 for NO

and �m

2
32 for IO.
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Figure 2. Global 3⌫ oscillation analysis. The red (blue) curves correspond to Normal (Inverted)
Ordering. The normalization of reactor fluxes is left free and data from short-baseline reactor
experiments are included. Note that as atmospheric mass-squared splitting we use �m

2
31 for NO

and �m

2
32 for IO.
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•well determined 
parameters 
 
θ12 θ13 Δm

2
21 |Δm

2
31| 

 

open issues:

•θ23: octant/maximality

•mass ordering

•δCP : preference for 
180° < δCP < 360°

3-flavour mixing - global fit as of fall 2016

NuFIT 3.0, Esteban et al., 1611.01514 www.nu-fit.org

http://www.nu-fit.org
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Figure 2. Global 3⌫ oscillation analysis. The red (blue) curves correspond to Normal (Inverted)
Ordering. The normalization of reactor fluxes is left free and data from short-baseline reactor
experiments are included. Note that as atmospheric mass-squared splitting we use �m

2
31 for NO

and �m

2
32 for IO.
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Figure 2. Global 3⌫ oscillation analysis. The red (blue) curves correspond to Normal (Inverted)
Ordering. The normalization of reactor fluxes is left free and data from short-baseline reactor
experiments are included. Note that as atmospheric mass-squared splitting we use �m

2
31 for NO

and �m

2
32 for IO.
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Figure 2. Global 3⌫ oscillation analysis. The red (blue) curves correspond to Normal (Inverted)
Ordering. The normalization of reactor fluxes is left free and data from short-baseline reactor
experiments are included. Note that as atmospheric mass-squared splitting we use �m

2
31 for NO

and �m

2
32 for IO.
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Figure 2. Global 3⌫ oscillation analysis. The red (blue) curves correspond to Normal (Inverted)
Ordering. The normalization of reactor fluxes is left free and data from short-baseline reactor
experiments are included. Note that as atmospheric mass-squared splitting we use �m

2
31 for NO

and �m

2
32 for IO.
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•well determined 
parameters 
 
θ12 θ13 Δm

2
21 |Δm

2
31| 

 

open issues:

•θ23: octant/maximality

•mass ordering

•δCP : preference for 
180° < δCP < 360°

3-flavour mixing - global fit as of fall 2016

NuFIT 3.0, Esteban et al., 1611.01514 www.nu-fit.org
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precision at 3σ:
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Figure 2. Global 3⌫ oscillation analysis. The red (blue) curves correspond to Normal (Inverted)
Ordering. The normalization of reactor fluxes is left free and data from short-baseline reactor
experiments are included. Note that as atmospheric mass-squared splitting we use �m

2
31 for NO

and �m

2
32 for IO.
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Figure 2. Global 3⌫ oscillation analysis. The red (blue) curves correspond to Normal (Inverted)
Ordering. The normalization of reactor fluxes is left free and data from short-baseline reactor
experiments are included. Note that as atmospheric mass-squared splitting we use �m

2
31 for NO

and �m

2
32 for IO.
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Figure 2. Global 3⌫ oscillation analysis. The red (blue) curves correspond to Normal (Inverted)
Ordering. The normalization of reactor fluxes is left free and data from short-baseline reactor
experiments are included. Note that as atmospheric mass-squared splitting we use �m

2
31 for NO

and �m

2
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Figure 2. Global 3⌫ oscillation analysis. The red (blue) curves correspond to Normal (Inverted)
Ordering. The normalization of reactor fluxes is left free and data from short-baseline reactor
experiments are included. Note that as atmospheric mass-squared splitting we use �m

2
31 for NO

and �m

2
32 for IO.
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•well determined 
parameters 
 
θ12 θ13 Δm

2
21 |Δm

2
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open issues:

•θ23: octant/maximality

•mass ordering

•δCP : preference for 
180° < δCP < 360°

3-flavour mixing - global fit as of fall 2016

NuFIT 3.0, Esteban et al., 1611.01514 www.nu-fit.org
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This talk

•determination of the CP phase

•status of the mass ordering and θ23

•non-standard neutrino interactions
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Leptonic CP violation
Neutrino oscillations Current status and implications

CP violation
Leptonic CP violation will manifest itself in a di�erence of the vacuum
oscillation probabilities for neutrinos and anti-neutrinos
Cabibbo, 1977; Bilenky, Hosek, Petcov, 1980, Barger, Whisnant, Phillips, 1980

P‹–æ‹— ≠ P‹̄–æ‹̄— Ã J , J = |Im(U–1Uú
–2Uú

—1U—2)|
J : leptonic analogue to Jarlskog-invariant Jarlskog, 1985

standard parameterization: J = s12c12s23c23s13c2
13 sin ” © Jmax sin ”

present data NuFit 2.0: Jmax = 0.0329 ± 0.0009 (1‡)
compare with Jarlskog invariant in the quark sector:

J
CKM

= (3.06+0.21
≠0.20) ◊ 10≠5

I CPV for leptons might be a factor 1000 larger than for quarks
I OBS: for quarks we know J , for leptons only Jmax (do not know ”!)
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Figure 3. Dependence of the global ��

2 function on the Jarlskog invariant. The red (blue) curves
are for NO (IO).

leptonic mixing matrix:

|U | =

0

B@
0.800 ! 0.844 0.515 ! 0.581 0.139 ! 0.155

0.229 ! 0.516 0.438 ! 0.699 0.614 ! 0.790

0.249 ! 0.528 0.462 ! 0.715 0.595 ! 0.776

1

CA . (2.1)

Note that there are strong correlations between the elements due to the unitary constraint.

The present status of the determination of leptonic CP violation is illustrated in Fig. 3.

In the left panel we show the dependence of ��

2 of the global analysis on the Jarlskog

invariant which gives a convention-independent measure of CP violation [57], defined as

usual by:

Im
⇥
U

↵i

U

⇤
↵j

U

⇤
�i

U

�j

⇤
⌘ J

max

CP

sin � = cos ✓
12

sin ✓
12

cos ✓
23

sin ✓
23

cos2 ✓
13

sin ✓
13

sin � (2.2)

where we have used the parametrization in Eq. (1.1). Thus the determination of the mixing

angles yields at present a maximum allowed CP violation

J

max

CP

= 0.0329± 0.0007 (+0.0021

�0.0024

) (2.3)

at 1� (3�) for both orderings. The preference of the present data for non-zero �

CP

implies

a best fit value J

best

CP

= �0.033, which is favored over CP conservation with ��

2 = 1.7.

These numbers can be compared with the size of the Jarlskog invariant in the quark sector,

which is determined to be J

quarks

CP

= (3.04+0.21

�0.20

)⇥ 10�5 [58].

In Fig. 4 we recast the allowed regions for the leptonic mixing matrix in terms of

one leptonic unitarity triangle. Since in the analysis U is unitary by construction, any

given pair of rows or columns can be used to define a triangle in the complex plane.

In the figure we show the triangle corresponding to the unitarity conditions on the first

and third columns which is the equivalent to the one usually shown for the quark sector.

– 7 –

NuFit 3.0:

Neutrino oscillations Current status and implications

CP violation
Leptonic CP violation will manifest itself in a di�erence of the vacuum
oscillation probabilities for neutrinos and anti-neutrinos
Cabibbo, 1977; Bilenky, Hosek, Petcov, 1980, Barger, Whisnant, Phillips, 1980

P‹–æ‹— ≠ P‹̄–æ‹̄— Ã J , J = |Im(U–1Uú
–2Uú

—1U—2)|
J : leptonic analogue to Jarlskog-invariant Jarlskog, 1985

standard parameterization: J = s12c12s23c23s13c2
13 sin ” © Jmax sin ”

present data NuFit 2.0: Jmax = 0.0329 ± 0.0009 (1‡)
compare with Jarlskog invariant in the quark sector:

J
CKM

= (3.06+0.21
≠0.20) ◊ 10≠5

I CPV for leptons might be a factor 1000 larger than for quarks
I OBS: for quarks we know J , for leptons only Jmax (do not know ”!)
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CP phase from present data

•best fit at δCP ≈ 270°

• correlations with θ23

•CP conservation allowed at 70% CL (NO), 97% CL (IO)

•δCP ≈ 90° disfavoured with Δ𝝌2
 ≈ 6 (14) for NO (IO)
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Figure 10. Allowed regions from the global data at 1�, 90%, 2�, 99% and 3� CL (2 dof). We
show projections onto di↵erent planes with �CP on the vertical axis after minimizing with respect
to all undisplayed parameters. The lower (upper) panels correspond to IO (NO). Contour regions
are derived with respect to the global minimum which occurs for NO and is indicated by a star.
The local minimum for IO is shown by a black dot.

• Regarding ✓

23

, its precision is dominated by ⌫

µ

disappearance experiments. Since

the relevant survival probability depends dominantly on sin2 2✓
23

, there is both a

physical boundary of their parameter space at ✓

23

= 45� (because sin 2✓
23

< 1), as

well as a degeneracy related to the octant.

• The mass ordering is a discrete parameter.

• The dependence of the theoretical predictions on �

CP

is significantly non-linear, even

more considering the periodic nature of this parameter. Furthermore, there are com-

plicated correlations and degeneracies between �

CP

, ✓
23

, and the mass ordering (see

Fig. 10 for illustration).

Therefore, one may expect deviations from the Gaussian limit of the ��

2 distributions,

and confidence levels for these parameters should be cross checked through a Monte Carlo

simulation of the relevant experiments. We consider in the following the combination of
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Figure 10. Allowed regions from the global data at 1�, 90%, 2�, 99% and 3� CL (2 dof). We
show projections onto di↵erent planes with �CP on the vertical axis after minimizing with respect
to all undisplayed parameters. The lower (upper) panels correspond to IO (NO). Contour regions
are derived with respect to the global minimum which occurs for NO and is indicated by a star.
The local minimum for IO is shown by a black dot.
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disappearance experiments. Since

the relevant survival probability depends dominantly on sin2 2✓
23

, there is both a

physical boundary of their parameter space at ✓

23

= 45� (because sin 2✓
23

< 1), as

well as a degeneracy related to the octant.

• The mass ordering is a discrete parameter.

• The dependence of the theoretical predictions on �

CP

is significantly non-linear, even

more considering the periodic nature of this parameter. Furthermore, there are com-
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CP

, ✓
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, and the mass ordering (see

Fig. 10 for illustration).

Therefore, one may expect deviations from the Gaussian limit of the ��
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and confidence levels for these parameters should be cross checked through a Monte Carlo
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Figure 2. Global 3⌫ oscillation analysis. The red (blue) curves correspond to Normal (Inverted)
Ordering. The normalization of reactor fluxes is left free and data from short-baseline reactor
experiments are included. Note that as atmospheric mass-squared splitting we use �m

2
31 for NO

and �m

2
32 for IO.
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Figure 2. Global 3⌫ oscillation analysis. The red (blue) curves correspond to Normal (Inverted)
Ordering. The normalization of reactor fluxes is left free and data from short-baseline reactor
experiments are included. Note that as atmospheric mass-squared splitting we use �m

2
31 for NO

and �m

2
32 for IO.
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Figure 11. Allowed regions from the global data at 1�, 90%, 2�, 99% and 3� CL (2 dof). We
show projections onto di↵erent planes with �CP on the vertical axis after minimizing with respect
to all undisplayed parameters. The lower (upper) panels correspond to IO (NO). Contour regions
are derived with respect to the global minimum which occurs for NO and is indicated by a star.
The local minimum for IO is shown by a black dot.

physical boundary of their parameter space at ✓

23

= 45� (because sin 2✓
23

< 1), as

well as a degeneracy related to the octant.

• The mass ordering is a discrete parameter.

• The dependence of the theoretical predictions on �

CP

is significantly non-linear, even

more considering the periodic nature of this parameter. Furthermore, there are com-

plicated correlations and degeneracies between �

CP

, ✓
23

, and the mass ordering (see

Fig. 11 for illustration).

Therefore, one may expect deviations from the Gaussian limit of the ��

2 distributions,

and confidence levels for these parameters should be cross checked through a Monte Carlo

simulation of the relevant experiments. We consider in the following the combination of

the T2K, NO⌫A, MINOS and Daya-Bay experiments, which are most relevant for the

parameters we are interested in this section. For a given point of assumed true values for
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Figure 11. Allowed regions from the global data at 1�, 90%, 2�, 99% and 3� CL (2 dof). We
show projections onto di↵erent planes with �CP on the vertical axis after minimizing with respect
to all undisplayed parameters. The lower (upper) panels correspond to IO (NO). Contour regions
are derived with respect to the global minimum which occurs for NO and is indicated by a star.
The local minimum for IO is shown by a black dot.

physical boundary of their parameter space at ✓

23

= 45� (because sin 2✓
23

< 1), as

well as a degeneracy related to the octant.

• The mass ordering is a discrete parameter.

• The dependence of the theoretical predictions on �

CP

is significantly non-linear, even

more considering the periodic nature of this parameter. Furthermore, there are com-

plicated correlations and degeneracies between �

CP

, ✓
23

, and the mass ordering (see

Fig. 11 for illustration).

Therefore, one may expect deviations from the Gaussian limit of the ��

2 distributions,

and confidence levels for these parameters should be cross checked through a Monte Carlo

simulation of the relevant experiments. We consider in the following the combination of

the T2K, NO⌫A, MINOS and Daya-Bay experiments, which are most relevant for the

parameters we are interested in this section. For a given point of assumed true values for
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CP phase from present data

•best fit at δCP ≈ 270°

• correlations with θ23

•CP conservation allowed at 70% CL (NO), 97% CL (IO)

•δCP ≈ 90° disfavoured with Δ𝝌2
 ≈ 6 (14) for NO (IO)
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Figure 2. Global 3⌫ oscillation analysis. The red (blue) curves correspond to Normal (Inverted)
Ordering. The normalization of reactor fluxes is left free and data from short-baseline reactor
experiments are included. Note that as atmospheric mass-squared splitting we use �m

2
31 for NO

and �m

2
32 for IO.
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Figure 2. Global 3⌫ oscillation analysis. The red (blue) curves correspond to Normal (Inverted)
Ordering. The normalization of reactor fluxes is left free and data from short-baseline reactor
experiments are included. Note that as atmospheric mass-squared splitting we use �m

2
31 for NO

and �m

2
32 for IO.
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Figure 9. �CP determination from LBL, reactor and their combination. Left (right) panels are
for IO (NO). The upper panels show the 1-dim ��

2 from LBL experiments after constraining only
✓13 from reactor experiments (this is, marginalizing Eq. (3.1) with respect to �m

2
3` and ✓23). For

each experiment ��

2 is defined with respect to the global minimum of the two orderings. The
lower panels show the corresponding determination when the full information of LBL accelerator
and reactor experiments is used in the combination (this is, marginalizing Eq. (3.2) with respect to
�m

2
3` and ✓23).

particular,

�

2

LBL+✓

REA
13

(✓
23

= 45�,NO)�min
✓23

�

2

LBL+✓

REA
13

(✓
23

,NO) = 5.5 (2.0) ,

�

2

LBL+✓

REA
13

(✓
23

= 45�, IO)�min
✓23

�

2

LBL+✓

REA
13

(✓
23

, IO) = 6.5 (1.9) ,

�

2

LBL+REA

(✓
23

= 45�,NO)�min
✓23

�

2

LBL+REA

(✓
23

,NO) = 2.8 (3.7) ,

�

2

LBL+REA

(✓
23

= 45�, IO)�min
✓23

�

2

LBL+REA

(✓
23

, IO) = 4.6 (5.2) ,

(3.3)

for LBL = NO⌫A (MINOS). On the other hand T2K results are compatible with

✓

23

= 45� for any ordering. Altogether we find that for NO the full combination of

LBL accelerator experiments and reactors disfavor maximal ✓
23

mixing by ��

2 = 3.2.
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Sensitivity from reactor - accelerator complementarity

Kirsty Duffy, University of Oxford 21

MEASUREMENT OF sin2θ13 AND ẟCP 

th13-dcp, dcp 1D

)13θ(
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Fit with reactor constraint
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2D posterior mode

T2K Run 1-7c preliminary

)σReactor constraint (1

ν+ν ̅ (new result) 
7.5x1020 POT ν mode and ν ̅mode

90% constraint on δCP 

ν-only (previous result) 
6.6x1020 POT ν-mode

No T2K-only sensitivity to δCP 

T2K Analysis method Results Future prospects

Reactor prior (±1σ)

Kirsty Duffy, University of Oxford 23

WHAT CAN WE SAY ABOUT ẟCP? 
STATISTICAL FLUCTUATIONS

Observed numbers of events most consistent with normal hierarchy and 
δCP = -π/2

Implies more CP violation than the model allows → stronger-than-expected 
exclusion of δCP = 0, ±π 

However, could just be a statistical fluctuation! Future results may get 
“worse” before they get better

⌫e ⌫̄e
Mass hierarchy Normal Inverted Normal Inverted

�CP= �⇡/2 28.8 25.5 6.0 6.5

�CP= 0 24.2 21.2 6.9 7.4

�CP= ⇡/2 19.7 17.2 7.7 8.4

�CP= ±⇡ 24.2 21.6 6.8 7.4

Data 32 4

T2K Analysis method Results Future prospects

T2K coll., K. Duffy,  NuPhys2016, London

• „lucky“ fluctuation in T2K?

• significance may grow slower than sqrt-N

• significant progress on CP expected in the long term (DUNE, T2HK)
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Mass ordering and θ23
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for inverted ordering and/or θ23 > 45° 
lepton mixing is very different from quarks
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Entering the era of redundancy
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Figure 6. Determination of �m

2
3` at 1� and 2� (2 dof), where ` = 1 for NO (upper panels) and

` = 2 for IO (lower panels). The left panels show regions in the (✓23,�m

2
3`) plane using both

appearance and disappearance data from MINOS (green line), T2K (red lines), NO⌫A (light blue
lines), as well as IceCube DeepCore (orange lines) and the combination of them (colored regions).
In these panels the constraint on ✓13 from the global fit (which is dominated by the reactor data)
is imposed as a Gaussian bias. The right panels show regions in the (✓13,�m

2
3`) plane using only

Daya-Bay (black lines), reactor data without Daya-Bay (violet lines), and their combination (colored
regions). In all panels solar and KamLAND data are included to constrain �m

2
21 and ✓12. Contours

are defined with respect to the global minimum of the two orderings.

currently followed by the LBL accelerator experiments: we marginalize with respect to ✓

13

,

taking into account the information from reactor data by adding a Gaussian penalty term

to the corresponding �

2

LBL

. This is not the same as making a combined analysis of LBL

and reactor data as we will quantify in Sec. 3.2.1.

Concerning ⌫

e

disappearance data, the total rates observed in reactor experiments at

di↵erent baselines can provide an independent determination of �m

2

3`

[50, 62]. On top of

this, the observation of the energy-dependent oscillation e↵ect due to ✓

13

now allows to

further strengthen such measurement. In the right panels of Fig. 6 we show therefore the

allowed regions in the (✓
13

,�m

2

3`

) plane based on global data on ⌫

e

disappearance. The

violet contours are obtained from all the medium-baselines reactor experiments with the

exception of Daya-Bay; these regions emerge from the baseline e↵ect mentioned above plus

– 10 –

•consistent results in νe 
and νμ disappearance 
searches

•several consistent 
results in νμ 
disappearance

NO

IO

νμ disappearance νe disappearance        
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Figure 6. Determination of �m

2
3` at 1� and 2� (2 dof), where ` = 1 for NO (upper panels) and

` = 2 for IO (lower panels). The left panels show regions in the (✓23,�m

2
3`) plane using both

appearance and disappearance data from MINOS (green line), T2K (red lines), NO⌫A (light blue
lines), as well as IceCube DeepCore (orange lines) and the combination of them (colored regions).
In these panels the constraint on ✓13 from the global fit (which is dominated by the reactor data)
is imposed as a Gaussian bias. The right panels show regions in the (✓13,�m

2
3`) plane using only

Daya-Bay (black lines), reactor data without Daya-Bay (violet lines), and their combination (colored
regions). In all panels solar and KamLAND data are included to constrain �m

2
21 and ✓12. Contours

are defined with respect to the global minimum of the two orderings.

currently followed by the LBL accelerator experiments: we marginalize with respect to ✓

13

,

taking into account the information from reactor data by adding a Gaussian penalty term

to the corresponding �

2

LBL

. This is not the same as making a combined analysis of LBL

and reactor data as we will quantify in Sec. 3.2.1.

Concerning ⌫

e

disappearance data, the total rates observed in reactor experiments at

di↵erent baselines can provide an independent determination of �m

2

3`

[50, 62]. On top of

this, the observation of the energy-dependent oscillation e↵ect due to ✓

13

now allows to

further strengthen such measurement. In the right panels of Fig. 6 we show therefore the

allowed regions in the (✓
13

,�m

2

3`

) plane based on global data on ⌫

e

disappearance. The

violet contours are obtained from all the medium-baselines reactor experiments with the

exception of Daya-Bay; these regions emerge from the baseline e↵ect mentioned above plus
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Mass ordering and θ23

•hint for non-maximal θ23 driven by  
NOvA/MINOS 

• between 91% and 98% CL
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Figure 8. ✓23 determination from LBL, reactor and their combination. Left (right) panels are
for IO (NO). The upper panels show the 1-dim ��

2 from LBL experiments after constraining only
✓13 from reactor experiments (this is, marginalizing Eq. (3.1) with respect to �m

2
3` and �CP). For

each experiment ��

2 is defined with respect to the global minimum of the two orderings. The
lower panels show the corresponding determination when the full information of LBL accelerator
and reactor experiments is used in the combination (this is, marginalizing Eq. (3.2) with respect to
�m

2
3` and �CP).

bining with the reactor data, we find that the preference for NO by T2K+REA is

reduced, and NO⌫A+REA actually favors IO. This is due to the slightly lower value

of |�m

2

3`

| favored by the reactor data, in particular in comparison with NO⌫A for

both orderings, and also with T2K for NO. Altogether we find that for the full combi-

nation of LBL accelerator experiments with reactors the “hint” towards NO is below

1�.

• Figure 8 illustrates how both NO⌫A and MINOS favor non-maximal ✓
23

. From this

figure we see that while the significance of non-maximality in NO⌫A seems more

evident than in MINOS when only the information of ✓
13

is included (upper panels),

the opposite holds for the full combination with the reactor data (lower panels). In

– 13 –

IO NO

NO

IO
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Mass ordering and θ23

•preferred octant depends on MO, poor sensitivity to octant

•results from global fit for normal vs inverted: Δ𝝌2 ≈ 1
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Figure 2. Global 3⌫ oscillation analysis. The red (blue) curves correspond to Normal (Inverted)
Ordering. The normalization of reactor fluxes is left free and data from short-baseline reactor
experiments are included. Note that as atmospheric mass-squared splitting we use �m

2
31 for NO

and �m

2
32 for IO.
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NO

IO

�

CP,true

Ordering ✓

23

= 45� 90% CL range 95% CL range

0� NO 92% [0.40, 0.49] [ [0.55, 0.61] [0.39, 0.62]

IO 98% [0.55, 0.62] [0.42, 0.46] [ [0.54, 0.63]

180� NO 91% [0.40, 0.50] [ [0.54, 0.61] [0.40, 0.62]

IO 98% [0.43, 0.44] [ [0.55, 0.62] [0.41, 0.46] [ [0.54, 0.63]

270� NO 92% [0.40, 0.49] [ [0.55, 0.61] [0.39, 0.62]

IO 97% [0.42, 0.45] [ [0.55, 0.62] [0.41, 0.48] [ [0.53, 0.63]

Gaussian NO 92% [0.41, 0.49] [ [0.55, 0.61] [0.40, 0.62]

IO 98% [0.56, 0.62] [0.43, 0.45] [ [0.54, 0.63]

Table 4. CL for the rejection of maximal ✓23 mixing (third column), and 90% and 95% CL intervals
for sin2 ✓23 for di↵erent sets of true parameter values and in the Gaussian approximation (last row).

�

CP,true

NO/2nd Oct. IO/1st Oct. IO/2nd Oct.

0� 62% 91% 28%

180� 56% 89% 32%

270� 70% 83% 27%

Gaussian 72% 94% 46%

Table 5. CL for the rejection of various combinations of mass ordering and ✓23 octant with respect
to the global best fit (which happens for NO and 1st octant). We quote the CL of the local minima
for each ordering/octant combination, assuming three example values for the true value of �CP as
well as for the Gaussian approximation (last row).

for sin2 ✓
23

for both orderings with respect to the global best fit. We observe from the table

that the Gaussian approximation is quite good for both, the CL of maximal mixing as well

as for the confidence intervals. We conclude that present data excludes maximal mixing at

slightly more than 90% CL. Again we note that the intervals for sin2 ✓
23

for IO cannot be

directly compared with the ones from Tab. 1, where they are defined with respect to the

local minimum in each ordering.

In Tab. 5 we show the CL at which a certain combination of mass ordering and ✓

23

octant can be excluded with respect to the global minimum in the NO and 1st ✓
23

octant.

We observe that the CL of the second octant for NO shows relatively large deviations from

Gaussianity and dependence on the true value of �
CP

. In any case, the sensitivity is very

low and the 2nd octant can be reject at most at 70% CL (1�) for all values of �
CP

. The

first octant for IO can be excluded at between 83% and 91% CL, depending on �

CP

. As

discussed above, the exclusion of the IO/2nd octant case corresponds also to the exclusion

of the IO, since at that point the confidence interval in IO would vanish. Also in this

case we observe deviations from the Gaussian approximation and the CL of at best 32%

is clearly less than 1� (consistent with the results discussed in the previous subsection),

showing that the considered data set has essentially no sensitivity to the mass ordering.

– 23 –

CL from MC study of LBL and reactor data:
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•  χ2NH&–&χ2IH&=&24.3%(23.1%expected)%
•  The&probability&to&obtain&Δχ2&of&04.3&or&less&for&IH&is&&0.03&(sin2θ23=0.6),&0.007&
(sin2θ23=0.4).&NH&hypothesis&:&0.45&(sin

2θ23=0.6)&

•  θ13&fixed&to&PDG&average&and&its&uncertainty&is&included&as&a&systema?c&error.&

Three&flavor&ν&oscilla?on&analysis&Super0K&atm.ν only(

Fit&(517&d.o.f.)& χ2& δcp& θ23& Δm23 (x10-3)&

Normal&Hierarchy&& 571.74& 4.189& 0.587& 2.5&

Inverted&Hierarchy& 576.08& 4.19& 0.575& 2.5&

Inverted&Hierarchy&&

Normal&Hierarchy&&

Preliminary%&

	

Δ
χ2

SK coll., talk by J. Kameda, NuFact 2016, Vietnam
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1 Introduction

Current data on neutrino oscillations show a degeneracy between two possible orderings of

the neutrino mass states, the normal ordering (NO) and inverted ordering (IO). Breaking

this degeneracy is one of the main goals of upcoming oscillation experiments, e.g., [1–5],

see [6] for an overview. On the other hand, also cosmological observations potentially may

contribute to this question. Cosmological structure formation is sensitive mostly to the sum

of the neutrino masses, ⌃. There are subtle e↵ects sensitive to the details of the neutrino

mass spectrum beyond the sum, see e.g., [7–10]. With realistic observations in the foreseeable

future those e↵ects will be very hard to detect [10]. Focusing on the sum of masses, we can

use that oscillation data determine the mass-squared di↵erences and we have:

⌃ ⌘
3X
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mi =
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0

+
p
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+m2
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+
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|��m2
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+m2

0
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, (1.1)

where m
0

denotes the lightest neutrino mass, where by convention m
0

⌘ m
1

(m
3

) for NO

(IO). The mass-squared di↵erences�m2

ij ⌘ m2

i�m2

j are determined to [11] (1� uncertainties):

�m2

21

= 7.49+0.19
�0.17 ⇥ 10�5 eV2 ,

�m2

31

= 2.484+0.045
�0.048 ⇥ 10�3 eV2 (NO)

�m2

32

= �2.467+0.041
�0.042 ⇥ 10�3 eV2 (IO)

. (1.2)

For a zero lightest neutrino mass (m
0

= 0), the predictions for the sum are (1� uncer-

tainties)

⌃ =

(
58.5± 0.48meV (NO)

98.6± 0.85meV (IO)
(m

0

= 0) . (1.3)

Hence, if cosmological observations provide a determination of ⌃ significantly below 0.098 eV,

the inverted mass ordering would be disfavoured.

Recent data from Planck CMB data combined with baryonic acoustic oscillations (BAO)

and other observations lead to the bound ⌃ < 0.23 eV at 95% CL (PlanckTT + lowP +

lensing + BAO + JLA + H
0

), see [12] for details. Depending on the used data and variations

in the analysis, di↵erent authors obtain upper bounds from current data approaching the

“critical” value of 0.1 eV [13–17]. These results suggest that IO starts to get under pressure

from cosmology.

In this note we want to point out that such a claim should be based on a proper statistical

analysis. The question to be answered is, whether the hypothesis of IO can be rejected with

some confidence against NO. For a related discussion in the context of oscillation experiments

see for instance ref. [6] formulated in terms of frequentist hypothesis testing, or ref. [18] using

Bayesian reasoning. Indeed, just from the numbers in eq. (1.3) one sees that it is not enough

that the upper bound on ⌃ is below 0.098 eV, but instead cosmology needs to determine

⌃ with an accuracy better than about 0.02 eV in order to exclude a value of 0.098 eV

against 0.059 eV at 2�. Note that this would imply a & 3� detection of a non-zero value
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Figure 1: Posterior likelihood function from current data (Planck+BAO+H
0

). The left panel shows the

posterior likelihood function for ⌃, where we indicate the predicted values for NO and IO in the case of

m
0

= 0; the width of the lines corresponds to ±2� uncertainty due to current oscillation data. The gray

shaded region indicates the one-sided upper bound on ⌃ at 95% CL (flat prior in ⌃). The right panel shows

the posterior likelihood as a function of m
0

for NO and IO with appropriate relative normalization. The

dashed, dot-dashed, solid curves correspond to the approximation that 1, 2, 3 massive neutrinos contribute

to ⌃ (see text for details).

none of these scenarios actually corresponds to the realistic cases of NO or IO with mass-

squared di↵erences constrained by oscillations. However, the spread in the results will be

indicative for our assumption that cosmology is sensitive only to ⌃. Indeed we confirm that

within the numerical accuracy all three models lead to an upper bound of 0.14 eV (95% CL).

The posterior likelihood function is shown in fig. 1. The left panel shows the likelihood

as a function of ⌃, and we indicate the predicted values for ⌃ for NO and IO assuming

m
0

= 0, as well as the 95% CL upper bound on ⌃, assuming a flat prior in ⌃ � 0. Note

that the region of largest likelihood, for ⌃ < 59 meV, is actually unphysical, since such small

values for the sum of the neutrino masses are inconsistent with neutrino oscillation data.

Hence, this region will be cut away once the sum is expressed using eq. (1.1) and imposing

the physical requirement of m
0

� 0.

In order to apply eq. (2.2) to calculate the probability of IO vs NO we translate the

likelihood into a posterior likelihood as a function of m
0

by using eq. (1.1).2 The resulting

likelihoods are shown in the right panel of fig. 1. The posterior odds for NO versus IO are

given by the ratio of the integrals over those two curves weighted by the prior probabilities

for the orderings. Assuming equal prior probabilities for NO and IO, eq. (2.2) leads to a

probability for IO of pI = 0.35, which corresponds to posterior odds for NO versus IO of

about 1.9:1. Clearly, using even quite restrictive assumptions about the cosmological model

2We neglect the uncertainty induced by the uncertainty on the mass-squared di↵erences from oscillation

data. For an accuracy on ⌃ larger than 0.01 eV this is an excellent approximation, see also sec. 4.
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none of these scenarios actually corresponds to the realistic cases of NO or IO with mass-

squared di↵erences constrained by oscillations. However, the spread in the results will be

indicative for our assumption that cosmology is sensitive only to ⌃. Indeed we confirm that

within the numerical accuracy all three models lead to an upper bound of 0.14 eV (95% CL).
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values for the sum of the neutrino masses are inconsistent with neutrino oscillation data.

Hence, this region will be cut away once the sum is expressed using eq. (1.1) and imposing

the physical requirement of m
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� 0.

In order to apply eq. (2.2) to calculate the probability of IO vs NO we translate the

likelihood into a posterior likelihood as a function of m
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by using eq. (1.1).2 The resulting

likelihoods are shown in the right panel of fig. 1. The posterior odds for NO versus IO are

given by the ratio of the integrals over those two curves weighted by the prior probabilities

for the orderings. Assuming equal prior probabilities for NO and IO, eq. (2.2) leads to a

probability for IO of pI = 0.35, which corresponds to posterior odds for NO versus IO of

about 1.9:1. Clearly, using even quite restrictive assumptions about the cosmological model

2We neglect the uncertainty induced by the uncertainty on the mass-squared di↵erences from oscillation

data. For an accuracy on ⌃ larger than 0.01 eV this is an excellent approximation, see also sec. 4.
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„Strong evidence“ for NO claimed in Simpson et al. 1703.03425
→ be aware of Bayesian priors [TS et al. 1703.04585] 

http://de.arxiv.org/abs/1703.03425
http://de.arxiv.org/abs/1703.04585
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Figure 2: Posterior likelihood function from simulated future data (EUCLID+Planck CMB). The left

panel shows the posterior likelihood function for ⌃ for a fiducial model with one massive neutrino with

m⌫ = 0.06 eV and two massless neutrinos. We indicate the predicted values for NO and IO in the case of

m
0

= 0; the width of the lines corresponds to ±2� uncertainty due to current oscillation data. The gray

shaded region indicates the one-sided upper bound on ⌃ at 95% CL (flat prior in ⌃). The right panel shows

the posterior likelihood as a function of m
0

for NO and IO with appropriate relative normalization.

as above we transform the likelihood now into a likelihood for m
0

assuming either NO or IO,

see right panel. We ignore the small e↵ects of the di↵erent orderings of the neutrino masses

and use the same likelihood to describe both normal and inverted orderings. As mentioned

above this should be an excellent approximation for the used data set. The relative posterior

likelihood for NO and IO is given by the ratio of the areas under the two curves. Assuming

equal prior probabilities for NO and IO we obtain a probability for IO according to eq. (2.2)

of 8%, which corresponds to posterior odds of NO versus IO of approximately 12:1.

4 Sensitivity estimates with a Gaussian toy likelihood

From fig. 2 one can see that the likelihood function as a function of ⌃ is close to Gaussian.

This is certainly true for the simulated EUCLID data, but holds approximately also for

present data. To estimate the required accuracy needed on ⌃ to exclude IO we assume

therefore that the likelihood function from cosmology can be approximated by

L(⌃obs|m
0

, O) =
1p
2⇡�

exp


�(⌃obs � ⌃(m

0

, O))2

2�2

�
(4.1)

where ⌃(m
0

, O) is given in eq. (1.1), and �2 = �2

osc

+ �2

obs

, with �
osc

(m
0

, O) being the error

on ⌃ induced by the uncertainty on the mass-squared di↵erences according to eq. (1.2), and

�
obs

is the accuracy on ⌃ assumed for the cosmological data. From eq. (1.3) we see that

�
osc

is below 1 meV for both orderings and m
0

= 0. For non-zero m
0

, �
osc

is even smaller.

Hence, for �
obs

& 0.01 eV, the uncertainty on ⌃ from oscillation data is negligible.
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• need accuracy better than 
0.02 eV to exclude 0.1 eV 
against 0.06 eV at 2σ

• this would imply a 3σ 
evidence for non-zero 
neutrino mass  
(for Sum = 0.06 eV)

simulated future data: 
2 yrs of EUCLID data, available ~2023-24

Excluding inverted ordering with cosmology?
Hannestad, Schwetz, 1606.04691

1 Introduction

Current data on neutrino oscillations show a degeneracy between two possible orderings of

the neutrino mass states, the normal ordering (NO) and inverted ordering (IO). Breaking

this degeneracy is one of the main goals of upcoming oscillation experiments, e.g., [1–5],

see [6] for an overview. On the other hand, also cosmological observations potentially may

contribute to this question. Cosmological structure formation is sensitive mostly to the sum

of the neutrino masses, ⌃. There are subtle e↵ects sensitive to the details of the neutrino

mass spectrum beyond the sum, see e.g., [7–10]. With realistic observations in the foreseeable

future those e↵ects will be very hard to detect [10]. Focusing on the sum of masses, we can
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Hence, if cosmological observations provide a determination of ⌃ significantly below 0.098 eV,

the inverted mass ordering would be disfavoured.

Recent data from Planck CMB data combined with baryonic acoustic oscillations (BAO)

and other observations lead to the bound ⌃ < 0.23 eV at 95% CL (PlanckTT + lowP +

lensing + BAO + JLA + H
0

), see [12] for details. Depending on the used data and variations

in the analysis, di↵erent authors obtain upper bounds from current data approaching the

“critical” value of 0.1 eV [13–17]. These results suggest that IO starts to get under pressure

from cosmology.

In this note we want to point out that such a claim should be based on a proper statistical

analysis. The question to be answered is, whether the hypothesis of IO can be rejected with

some confidence against NO. For a related discussion in the context of oscillation experiments

see for instance ref. [6] formulated in terms of frequentist hypothesis testing, or ref. [18] using

Bayesian reasoning. Indeed, just from the numbers in eq. (1.3) one sees that it is not enough

that the upper bound on ⌃ is below 0.098 eV, but instead cosmology needs to determine

⌃ with an accuracy better than about 0.02 eV in order to exclude a value of 0.098 eV

against 0.059 eV at 2�. Note that this would imply a & 3� detection of a non-zero value
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Beyond three-flavour oscillations?
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• three-flavour scenario very robust

•most extensions lead to sub-leading perturbations 
ex.: non-unitarity, eV-scale sterile neutrinos  
talk by C. Giunti

• counter example: non-standard interactions

Beyond three-flavour oscillations?
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Non-standard neutrino interactions

Non-standard neutrino interactions

Non-standard neutrino interactions
Neutrino interactions in the Standard Model:

H‹–
SM = GFÔ

2
‹̄–“µ(1 ≠ “5)‹–

ÿ

f
f̄ “µ(g–,f

V ≠ g–,f
A “5)f

assume presence of new physics inducing NSI:

HNSI = GFÔ
2

‹̄–“µ(1 ≠ “5)‹—

ÿ

f
f̄ “µ‘f

–—f

I ‘f
–— parametrizes strength of NSI relative to GF

I restrict to vector-type interactions (matter potential)
I NSI can be non-universal (– = —) or flavour-changing (– ”= —)
I in general not directly related to neutrino mass (dim-6)

but generically expected at some level
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assume presence of NC-like dim-6 effective operators:
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NSI constraints from oscillation data

• limits of few %, 

•exceptions: εeτ, εee-εμμ

90% CL 3�

Param. best-fit LMA LMA� LMA-D LMA LMA� LMA-D

"uee � "uµµ +0.298 [+0.00,+0.51] � [�1.19,�0.81] [�0.09,+0.71] � [�1.40,�0.68]

"u⌧⌧ � "uµµ +0.001 [�0.01,+0.03] [�0.03,+0.03] [�0.03,+0.20] [�0.19,+0.20]

"ueµ �0.021 [�0.09,+0.04] [�0.09,+0.10] [�0.16,+0.11] [�0.16,+0.17]

"ue⌧ +0.021 [�0.14,+0.14] [�0.15,+0.14] [�0.40,+0.30] [�0.40,+0.40]

"uµ⌧ �0.001 [�0.01,+0.01] [�0.01,+0.01] [�0.03,+0.03] [�0.03,+0.03]

"uD �0.140 [�0.24,�0.01] � [+0.40,+0.58] [�0.34,+0.04] � [+0.34,+0.67]

"uN �0.030 [�0.14,+0.13] [�0.15,+0.13] [�0.29,+0.21] [�0.29,+0.21]

"dee � "dµµ +0.310 [+0.02,+0.51] � [�1.17,�1.03] [�0.10,+0.71] � [�1.44,�0.87]

"d⌧⌧ � "dµµ +0.001 [�0.01,+0.03] [�0.01,+0.03] [�0.03,+0.19] [�0.16,+0.19]

"deµ �0.023 [�0.09,+0.04] [�0.09,+0.08] [�0.16,+0.11] [�0.16,+0.17]

"de⌧ +0.023 [�0.13,+0.14] [�0.13,+0.14] [�0.38,+0.29] [�0.38,+0.35]

"dµ⌧ �0.001 [�0.01,+0.01] [�0.01,+0.01] [�0.03,+0.03] [�0.03,+0.03]

"dD �0.145 [�0.25,�0.02] � [+0.49,+0.57] [�0.34,+0.05] � [+0.42,+0.70]

"dN �0.036 [�0.14,+0.12] [�0.14,+0.12] [�0.28,+0.21] [�0.28,+0.21]

Table 1. 90% and 3� allowed ranges for the matter potential parameters "f↵� for f = u, d as
obtained from the global analysis of oscillation data. The results are obtained after marginalizing
over oscillation and the other matter potential parameters either within the LMA only and within
either LMA or LMA-D subspaces respectively. The numbers quoted are the SNO-poly variant of
the solar analysis. See text for details.

5 Summary

In this article we have quantified our current knowledge of the size and flavor structure of the

matter background e↵ects in the evolution of solar, atmospheric, reactor and LBL neutrinos

based solely on a global analysis of oscillation data. It complements the study in Ref. [54]

where the analysis of the matter potential was perform only considering atmospheric and

LBL neutrinos.

After briefly presenting the most general parametrization of the matter potential and

its connection with non-standard neutrino interactions (NSI), we have focused on the anal-

ysis of solar and KamLAND data. We have found (see Fig. 2) that the fit always prefers

some non-standard value of the matter potential parameters, while the SM potential lies at

a ��2 ⇠ 5–8 depending on the details of the analysis. This is consequence of the fact that

none of the experiments sensitive to 8B neutrinos has provided so far evidence of the low

energy turn-up of the spectrum predicted in the standard LMA MSW solution (see Fig. 3).

We have also found in that the present analysis still allows for two disconnected regions in

the parameter space, the “standard” LMA region and the “dark side” LMA-D (see Fig. 1),

and that the statistical di↵erence between both solutions never exceeds ��2 = 1.4. Al-

though the LMA-D solution requires rather large values of the matter parameters, we have

shown (and latter quantified in Sec. 4) that it is still fully compatible with the bounds from

atmospheric and LBL oscillation data.
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Table 1. 90% and 3� allowed ranges for the matter potential parameters "f↵� for f = u, d as
obtained from the global analysis of oscillation data. The results are obtained after marginalizing
over oscillation and the other matter potential parameters either within the LMA only and within
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5 Summary

In this article we have quantified our current knowledge of the size and flavor structure of the

matter background e↵ects in the evolution of solar, atmospheric, reactor and LBL neutrinos

based solely on a global analysis of oscillation data. It complements the study in Ref. [54]

where the analysis of the matter potential was perform only considering atmospheric and

LBL neutrinos.

After briefly presenting the most general parametrization of the matter potential and

its connection with non-standard neutrino interactions (NSI), we have focused on the anal-

ysis of solar and KamLAND data. We have found (see Fig. 2) that the fit always prefers

some non-standard value of the matter potential parameters, while the SM potential lies at

a ��2 ⇠ 5–8 depending on the details of the analysis. This is consequence of the fact that

none of the experiments sensitive to 8B neutrinos has provided so far evidence of the low

energy turn-up of the spectrum predicted in the standard LMA MSW solution (see Fig. 3).

We have also found in that the present analysis still allows for two disconnected regions in

the parameter space, the “standard” LMA region and the “dark side” LMA-D (see Fig. 1),

and that the statistical di↵erence between both solutions never exceeds ��2 = 1.4. Al-

though the LMA-D solution requires rather large values of the matter parameters, we have

shown (and latter quantified in Sec. 4) that it is still fully compatible with the bounds from

atmospheric and LBL oscillation data.
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Figure 6. Dependence of the ��2 function for the global analysis of solar, atmospheric, reactor
and LBL data on the NSI parameters "f↵� for f = u (upper panels) and f = d (lower panels), for
both LMA and LMA-D regions and the two variants of the SNO analysis, as labeled in the figure.

ter potential parameters "fD and "fN relevant in the propagation of solar and KamLAND

neutrinos. In both figures we display separately the results of the marginalization in the

LMA and the LMA-D regions of the parameter space, as well as both the SNO-data and

SNO-poly variants of the solar analysis. From these figures we derive the 90% and 3�

allowed ranges for the NSI parameters implied by the global analysis, which we summarize

in Table 1. The results in this table correspond to the SNO-poly analysis and have been

obtained for real matter potential parameters. As discussed in Sec. 2, in such a case only

the relative sign of the various "f↵ 6=� and the vacuum mixing angles can be determined by

oscillations. Thus strictly speaking once the results are marginalized with respect to all

other parameters in the most general parameter space, the oscillation analysis can only

provide bounds on |"f↵ 6=� |. Still, for the sake of completeness we have decided to retain

in Table 1 the signs of the non-diagonal "f↵ 6=� , which is correct as long as such signs are

understood to be relative vacuum-matter quantities and not intrinsic NSI features.

Neutrino scattering experiments such as CHARM [94, 95], CDHSW [96] and NuTeV [97]

are sensitive to NSI with u and d, and can therefore yield information on "f↵� [98]. In

Ref. [73] it was found that the combination with CHARM scattering results [94, 95] for

f = d substantially lifts the statistical di↵erence between LMA and LMA-D. Although a

rigorous combined analysis of the oscillation results presented here with those from scatter-
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NSI constraints from oscillation data

• limits of few %, 

•exceptions: εeτ, εee-εμμ
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Param. best-fit LMA LMA� LMA-D LMA LMA� LMA-D
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"uD �0.140 [�0.24,�0.01] � [+0.40,+0.58] [�0.34,+0.04] � [+0.34,+0.67]
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"dN �0.036 [�0.14,+0.12] [�0.14,+0.12] [�0.28,+0.21] [�0.28,+0.21]

Table 1. 90% and 3� allowed ranges for the matter potential parameters "f↵� for f = u, d as
obtained from the global analysis of oscillation data. The results are obtained after marginalizing
over oscillation and the other matter potential parameters either within the LMA only and within
either LMA or LMA-D subspaces respectively. The numbers quoted are the SNO-poly variant of
the solar analysis. See text for details.

5 Summary

In this article we have quantified our current knowledge of the size and flavor structure of the

matter background e↵ects in the evolution of solar, atmospheric, reactor and LBL neutrinos

based solely on a global analysis of oscillation data. It complements the study in Ref. [54]

where the analysis of the matter potential was perform only considering atmospheric and

LBL neutrinos.

After briefly presenting the most general parametrization of the matter potential and

its connection with non-standard neutrino interactions (NSI), we have focused on the anal-

ysis of solar and KamLAND data. We have found (see Fig. 2) that the fit always prefers

some non-standard value of the matter potential parameters, while the SM potential lies at

a ��2 ⇠ 5–8 depending on the details of the analysis. This is consequence of the fact that

none of the experiments sensitive to 8B neutrinos has provided so far evidence of the low

energy turn-up of the spectrum predicted in the standard LMA MSW solution (see Fig. 3).

We have also found in that the present analysis still allows for two disconnected regions in

the parameter space, the “standard” LMA region and the “dark side” LMA-D (see Fig. 1),

and that the statistical di↵erence between both solutions never exceeds ��2 = 1.4. Al-

though the LMA-D solution requires rather large values of the matter parameters, we have

shown (and latter quantified in Sec. 4) that it is still fully compatible with the bounds from

atmospheric and LBL oscillation data.
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Table 1. 90% and 3� allowed ranges for the matter potential parameters "f↵� for f = u, d as
obtained from the global analysis of oscillation data. The results are obtained after marginalizing
over oscillation and the other matter potential parameters either within the LMA only and within
either LMA or LMA-D subspaces respectively. The numbers quoted are the SNO-poly variant of
the solar analysis. See text for details.

5 Summary

In this article we have quantified our current knowledge of the size and flavor structure of the

matter background e↵ects in the evolution of solar, atmospheric, reactor and LBL neutrinos

based solely on a global analysis of oscillation data. It complements the study in Ref. [54]

where the analysis of the matter potential was perform only considering atmospheric and

LBL neutrinos.

After briefly presenting the most general parametrization of the matter potential and

its connection with non-standard neutrino interactions (NSI), we have focused on the anal-

ysis of solar and KamLAND data. We have found (see Fig. 2) that the fit always prefers

some non-standard value of the matter potential parameters, while the SM potential lies at

a ��2 ⇠ 5–8 depending on the details of the analysis. This is consequence of the fact that

none of the experiments sensitive to 8B neutrinos has provided so far evidence of the low

energy turn-up of the spectrum predicted in the standard LMA MSW solution (see Fig. 3).

We have also found in that the present analysis still allows for two disconnected regions in

the parameter space, the “standard” LMA region and the “dark side” LMA-D (see Fig. 1),

and that the statistical di↵erence between both solutions never exceeds ��2 = 1.4. Al-

though the LMA-D solution requires rather large values of the matter parameters, we have

shown (and latter quantified in Sec. 4) that it is still fully compatible with the bounds from

atmospheric and LBL oscillation data.
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Figure 6. Dependence of the ��2 function for the global analysis of solar, atmospheric, reactor
and LBL data on the NSI parameters "f↵� for f = u (upper panels) and f = d (lower panels), for
both LMA and LMA-D regions and the two variants of the SNO analysis, as labeled in the figure.

ter potential parameters "fD and "fN relevant in the propagation of solar and KamLAND

neutrinos. In both figures we display separately the results of the marginalization in the

LMA and the LMA-D regions of the parameter space, as well as both the SNO-data and

SNO-poly variants of the solar analysis. From these figures we derive the 90% and 3�

allowed ranges for the NSI parameters implied by the global analysis, which we summarize

in Table 1. The results in this table correspond to the SNO-poly analysis and have been

obtained for real matter potential parameters. As discussed in Sec. 2, in such a case only

the relative sign of the various "f↵ 6=� and the vacuum mixing angles can be determined by

oscillations. Thus strictly speaking once the results are marginalized with respect to all

other parameters in the most general parameter space, the oscillation analysis can only

provide bounds on |"f↵ 6=� |. Still, for the sake of completeness we have decided to retain

in Table 1 the signs of the non-diagonal "f↵ 6=� , which is correct as long as such signs are

understood to be relative vacuum-matter quantities and not intrinsic NSI features.

Neutrino scattering experiments such as CHARM [94, 95], CDHSW [96] and NuTeV [97]

are sensitive to NSI with u and d, and can therefore yield information on "f↵� [98]. In

Ref. [73] it was found that the combination with CHARM scattering results [94, 95] for

f = d substantially lifts the statistical di↵erence between LMA and LMA-D. Although a

rigorous combined analysis of the oscillation results presented here with those from scatter-
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NSI constraints from oscillation data

• limits of few %, 

•exceptions: εeτ, εee-εμμ

90% CL 3�

Param. best-fit LMA LMA� LMA-D LMA LMA� LMA-D

"uee � "uµµ +0.298 [+0.00,+0.51] � [�1.19,�0.81] [�0.09,+0.71] � [�1.40,�0.68]
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"ueµ �0.021 [�0.09,+0.04] [�0.09,+0.10] [�0.16,+0.11] [�0.16,+0.17]

"ue⌧ +0.021 [�0.14,+0.14] [�0.15,+0.14] [�0.40,+0.30] [�0.40,+0.40]
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"de⌧ +0.023 [�0.13,+0.14] [�0.13,+0.14] [�0.38,+0.29] [�0.38,+0.35]

"dµ⌧ �0.001 [�0.01,+0.01] [�0.01,+0.01] [�0.03,+0.03] [�0.03,+0.03]
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Table 1. 90% and 3� allowed ranges for the matter potential parameters "f↵� for f = u, d as
obtained from the global analysis of oscillation data. The results are obtained after marginalizing
over oscillation and the other matter potential parameters either within the LMA only and within
either LMA or LMA-D subspaces respectively. The numbers quoted are the SNO-poly variant of
the solar analysis. See text for details.

5 Summary

In this article we have quantified our current knowledge of the size and flavor structure of the

matter background e↵ects in the evolution of solar, atmospheric, reactor and LBL neutrinos

based solely on a global analysis of oscillation data. It complements the study in Ref. [54]

where the analysis of the matter potential was perform only considering atmospheric and

LBL neutrinos.

After briefly presenting the most general parametrization of the matter potential and

its connection with non-standard neutrino interactions (NSI), we have focused on the anal-

ysis of solar and KamLAND data. We have found (see Fig. 2) that the fit always prefers

some non-standard value of the matter potential parameters, while the SM potential lies at

a ��2 ⇠ 5–8 depending on the details of the analysis. This is consequence of the fact that

none of the experiments sensitive to 8B neutrinos has provided so far evidence of the low

energy turn-up of the spectrum predicted in the standard LMA MSW solution (see Fig. 3).

We have also found in that the present analysis still allows for two disconnected regions in

the parameter space, the “standard” LMA region and the “dark side” LMA-D (see Fig. 1),

and that the statistical di↵erence between both solutions never exceeds ��2 = 1.4. Al-

though the LMA-D solution requires rather large values of the matter parameters, we have

shown (and latter quantified in Sec. 4) that it is still fully compatible with the bounds from

atmospheric and LBL oscillation data.
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90% CL 3�

Param. best-fit LMA LMA� LMA-D LMA LMA� LMA-D

"uee � "uµµ +0.298 [+0.00,+0.51] � [�1.19,�0.81] [�0.09,+0.71] � [�1.40,�0.68]

"u⌧⌧ � "uµµ +0.001 [�0.01,+0.03] [�0.03,+0.03] [�0.03,+0.20] [�0.19,+0.20]

"ueµ �0.021 [�0.09,+0.04] [�0.09,+0.10] [�0.16,+0.11] [�0.16,+0.17]

"ue⌧ +0.021 [�0.14,+0.14] [�0.15,+0.14] [�0.40,+0.30] [�0.40,+0.40]

"uµ⌧ �0.001 [�0.01,+0.01] [�0.01,+0.01] [�0.03,+0.03] [�0.03,+0.03]

"uD �0.140 [�0.24,�0.01] � [+0.40,+0.58] [�0.34,+0.04] � [+0.34,+0.67]

"uN �0.030 [�0.14,+0.13] [�0.15,+0.13] [�0.29,+0.21] [�0.29,+0.21]

"dee � "dµµ +0.310 [+0.02,+0.51] � [�1.17,�1.03] [�0.10,+0.71] � [�1.44,�0.87]

"d⌧⌧ � "dµµ +0.001 [�0.01,+0.03] [�0.01,+0.03] [�0.03,+0.19] [�0.16,+0.19]

"deµ �0.023 [�0.09,+0.04] [�0.09,+0.08] [�0.16,+0.11] [�0.16,+0.17]

"de⌧ +0.023 [�0.13,+0.14] [�0.13,+0.14] [�0.38,+0.29] [�0.38,+0.35]

"dµ⌧ �0.001 [�0.01,+0.01] [�0.01,+0.01] [�0.03,+0.03] [�0.03,+0.03]

"dD �0.145 [�0.25,�0.02] � [+0.49,+0.57] [�0.34,+0.05] � [+0.42,+0.70]

"dN �0.036 [�0.14,+0.12] [�0.14,+0.12] [�0.28,+0.21] [�0.28,+0.21]

Table 1. 90% and 3� allowed ranges for the matter potential parameters "f↵� for f = u, d as
obtained from the global analysis of oscillation data. The results are obtained after marginalizing
over oscillation and the other matter potential parameters either within the LMA only and within
either LMA or LMA-D subspaces respectively. The numbers quoted are the SNO-poly variant of
the solar analysis. See text for details.

5 Summary

In this article we have quantified our current knowledge of the size and flavor structure of the

matter background e↵ects in the evolution of solar, atmospheric, reactor and LBL neutrinos

based solely on a global analysis of oscillation data. It complements the study in Ref. [54]

where the analysis of the matter potential was perform only considering atmospheric and

LBL neutrinos.

After briefly presenting the most general parametrization of the matter potential and

its connection with non-standard neutrino interactions (NSI), we have focused on the anal-

ysis of solar and KamLAND data. We have found (see Fig. 2) that the fit always prefers

some non-standard value of the matter potential parameters, while the SM potential lies at

a ��2 ⇠ 5–8 depending on the details of the analysis. This is consequence of the fact that

none of the experiments sensitive to 8B neutrinos has provided so far evidence of the low

energy turn-up of the spectrum predicted in the standard LMA MSW solution (see Fig. 3).

We have also found in that the present analysis still allows for two disconnected regions in

the parameter space, the “standard” LMA region and the “dark side” LMA-D (see Fig. 1),

and that the statistical di↵erence between both solutions never exceeds ��2 = 1.4. Al-

though the LMA-D solution requires rather large values of the matter parameters, we have

shown (and latter quantified in Sec. 4) that it is still fully compatible with the bounds from

atmospheric and LBL oscillation data.
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Figure 6. Dependence of the ��2 function for the global analysis of solar, atmospheric, reactor
and LBL data on the NSI parameters "f↵� for f = u (upper panels) and f = d (lower panels), for
both LMA and LMA-D regions and the two variants of the SNO analysis, as labeled in the figure.

ter potential parameters "fD and "fN relevant in the propagation of solar and KamLAND

neutrinos. In both figures we display separately the results of the marginalization in the

LMA and the LMA-D regions of the parameter space, as well as both the SNO-data and

SNO-poly variants of the solar analysis. From these figures we derive the 90% and 3�

allowed ranges for the NSI parameters implied by the global analysis, which we summarize

in Table 1. The results in this table correspond to the SNO-poly analysis and have been

obtained for real matter potential parameters. As discussed in Sec. 2, in such a case only

the relative sign of the various "f↵ 6=� and the vacuum mixing angles can be determined by

oscillations. Thus strictly speaking once the results are marginalized with respect to all

other parameters in the most general parameter space, the oscillation analysis can only

provide bounds on |"f↵ 6=� |. Still, for the sake of completeness we have decided to retain

in Table 1 the signs of the non-diagonal "f↵ 6=� , which is correct as long as such signs are

understood to be relative vacuum-matter quantities and not intrinsic NSI features.

Neutrino scattering experiments such as CHARM [94, 95], CDHSW [96] and NuTeV [97]

are sensitive to NSI with u and d, and can therefore yield information on "f↵� [98]. In

Ref. [73] it was found that the combination with CHARM scattering results [94, 95] for

f = d substantially lifts the statistical di↵erence between LMA and LMA-D. Although a

rigorous combined analysis of the oscillation results presented here with those from scatter-
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both LMA and LMA-D regions and the two variants of the SNO analysis, as labeled in the figure.

ter potential parameters "fD and "fN relevant in the propagation of solar and KamLAND

neutrinos. In both figures we display separately the results of the marginalization in the

LMA and the LMA-D regions of the parameter space, as well as both the SNO-data and

SNO-poly variants of the solar analysis. From these figures we derive the 90% and 3�

allowed ranges for the NSI parameters implied by the global analysis, which we summarize

in Table 1. The results in this table correspond to the SNO-poly analysis and have been

obtained for real matter potential parameters. As discussed in Sec. 2, in such a case only

the relative sign of the various "f↵ 6=� and the vacuum mixing angles can be determined by

oscillations. Thus strictly speaking once the results are marginalized with respect to all

other parameters in the most general parameter space, the oscillation analysis can only

provide bounds on |"f↵ 6=� |. Still, for the sake of completeness we have decided to retain

in Table 1 the signs of the non-diagonal "f↵ 6=� , which is correct as long as such signs are

understood to be relative vacuum-matter quantities and not intrinsic NSI features.

Neutrino scattering experiments such as CHARM [94, 95], CDHSW [96] and NuTeV [97]

are sensitive to NSI with u and d, and can therefore yield information on "f↵� [98]. In

Ref. [73] it was found that the combination with CHARM scattering results [94, 95] for

f = d substantially lifts the statistical di↵erence between LMA and LMA-D. Although a

rigorous combined analysis of the oscillation results presented here with those from scatter-
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global analysis discussed in the next section (green lines). In order to take into account

the dependence on the neutrino production point, which is of particular relevance in the

presence of non-standard matter potential, we define the average survival probability hPeei
as

hPee(E⌫)i =
P

i�i(E⌫)
R
⇢i(r)Pee(E⌫ , r) drP
i�i(E⌫)

(3.1)

where i = pp, pep, 7Be, 13N, 15O, 17F, 8B and hep labels the neutrino production reaction

and ⇢i(r) is the distribution of production points for the reaction i normalized to 1.

4 Results of global analysis

We now present the results of the global analysis including also atmospheric, LBL and all

other reactor data. The data samples included here are the same as in the NuFIT 1.1

analysis described in Ref. [8]. For atmospheric data we use the Super-Kamiokande results

from phases 1–4 [74], adding the 1097 days of phase 4 to their published data from phases

1–3 [75]. For what concerns long-baseline accelerator experiments, we combine the energy

distribution obtained by MINOS in both ⌫µ (⌫̄⌫) disappearance [76] and ⌫e (⌫̄e) appearance

with 10.7 (3.36) ⇥ 1020 protons on target [77], and T2K ⌫e appearance and ⌫µ disappear-

ance data for phases 1–3 corresponding to 3.01 ⇥ 1020 pot [78]. For oscillation signals at
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and LBL data on the NSI parameters "f↵� for f = u (upper panels) and f = d (lower panels), for
both LMA and LMA-D regions and the two variants of the SNO analysis, as labeled in the figure.

ter potential parameters "fD and "fN relevant in the propagation of solar and KamLAND

neutrinos. In both figures we display separately the results of the marginalization in the

LMA and the LMA-D regions of the parameter space, as well as both the SNO-data and

SNO-poly variants of the solar analysis. From these figures we derive the 90% and 3�

allowed ranges for the NSI parameters implied by the global analysis, which we summarize

in Table 1. The results in this table correspond to the SNO-poly analysis and have been

obtained for real matter potential parameters. As discussed in Sec. 2, in such a case only

the relative sign of the various "f↵ 6=� and the vacuum mixing angles can be determined by

oscillations. Thus strictly speaking once the results are marginalized with respect to all

other parameters in the most general parameter space, the oscillation analysis can only

provide bounds on |"f↵ 6=� |. Still, for the sake of completeness we have decided to retain

in Table 1 the signs of the non-diagonal "f↵ 6=� , which is correct as long as such signs are

understood to be relative vacuum-matter quantities and not intrinsic NSI features.

Neutrino scattering experiments such as CHARM [94, 95], CDHSW [96] and NuTeV [97]

are sensitive to NSI with u and d, and can therefore yield information on "f↵� [98]. In

Ref. [73] it was found that the combination with CHARM scattering results [94, 95] for

f = d substantially lifts the statistical di↵erence between LMA and LMA-D. Although a

rigorous combined analysis of the oscillation results presented here with those from scatter-
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NSI with quarks (f = u, d) this degeneracy is lifted once the solar data are also included

in the analysis, as discussed in Sec. 2.2. Thus the colored regions are not exactly identical

for both orderings, although with present data the asymmetry is still minimal.

In Fig. 6 we plot the dependence of the ��2 function for the global analysis on the NSI

parameters "f↵� , after marginalizing over the undisplayed oscillation and matter potential

parameters. Similarly, in Fig. 7 we show the present determination on the e↵ective mat-
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• LMA-dark is a manifestation of a general symmetry of 
neutrino evolution related to CPT symmetry:  
 

• broken by SM matter effect but can be restored in 
presence of NSI:

H ! �H⇤as
�m2

31 ! ��m2
31 + �m2

21 = ��m2
32 ,

sin ✓12 $ cos ✓12 ,

� ! ⇡ � � ,

(2.4)

and simultaneously transforming the NSI parameters as

(✏ee � ✏µµ) ! �(✏ee � ✏µµ) � 2 ,

(✏⌧⌧ � ✏µµ) ! �(✏⌧⌧ � ✏µµ) ,

✏↵� ! �✏⇤↵� (↵ 6= �) ,

(2.5)

see Refs. [12, 15, 16]. In Eq. (2.4), � is the leptonic Dirac CP phase, and we are using

here the parameterization conventions from Ref. [16]. In Eq. (2.5) we take into account

explicitly that oscillation data are only sensitive to di↵erences in the diagonal elements

of the Hamiltonian. Eq. (2.4) shows that this degeneracy implies a change in the octant

of ✓12 (as manifest in the LMA-D fit to solar neutrino data [14]) as well as a change in

the neutrino mass ordering, i.e., the sign of �m2
31. For that reason it has been called

“generalized mass ordering degeneracy” in Ref. [16].

The ✏↵� in Eq. (2.5) are defined in Eq. (2.3) and depend on the density and composition

of the medium. If NSI couple to quarks proportional to charge, ✏u,V↵� = �2✏d,V↵� , they have

the same dependence as the standard matter e↵ect and the degeneracy is mathematically

exact and no combination of oscillation experiments will be able to resolve it. In this work

we consider only NSI with either up or down quarks and hence the degeneracy will be

approximate, mostly due to the non-trivial neutron density along the neutrino path inside

the Sun [12]. In particular, the first transformation in Eq. (2.5) becomes

(✏q,Vee � ✏q,Vµµ ) ! �(✏q,Vee � ✏q,Vµµ ) � ⇠q (q = u, d) , (2.6)

where ⇠q depends on the e↵ective matter composition relevant for the global data and will

be determined from the fit.

2.2 Neutrino scattering and heavy versus light NSI mediators

Neutrino scattering experiments are sensitive to di↵erent combinations of ✏f,P↵� , depending

on whether the scattering takes place with nuclei or electrons, the number of protons and

neutrons in the target nuclei and other factors. In Sec. 3 we will provide the combinations

of parameters constrained by each experiment considered in our global fit.

Before proceeding with the combined analysis let us comment on the viability of renor-

malizable models leading to large coe�cients in the neutrino sector. In particular it should

be noted that the operators written in Eq. (2.1) are not gauge invariant. Once gauge in-

variance is imposed to the full UV theory, the NSI operators listed above will be generated

together with analogous operators in the charged lepton sector, which obey the same fla-

vor structure. In this case, the non-observation of charge lepton flavor violating processes

(CLFV) (e.g., µ ! eee) imposes very tight constraints on the size of neutrino NSI for

new physics above the electroweak (EW) scale. This eventually renders the e↵ects of NSI

unobservable at neutrino oscillation experiments, unless fine-tuned cancellations among

– 5 –

�m2
31 ! ��m2

32

sin ✓12 $ cos ✓12

� ! ⇡ � �
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Generalized mass ordering degeneracy
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Generalized mass ordering degeneracy

generalized 
degeneracy makes 
determination of 
mass ordering 
impossible!
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•cannot be resolved by any oscillation 
experiment

•NC neutrino scattering experiments are needed 
(at low energy, e.g. coherent scattering)  

•requires NSI of order GF  
points towards „light mediators“ (below EW)

Generalized mass ordering degeneracy

Farzan, 15; Farzan, Shoemaker, 15
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Figure 7. Allowed regions in the plane of ✏u,Vee and ✏u,Vµµ from the COHERENT experiment (under
the assumption of no NSI in the data — same as in Fig. 5) overlayed with the presently allowed
regions from the global oscillation analysis. The two diagonal shaded bands correspond to the LMA
and LMA-D regions as indicated, at 1, 2, 3�. The dashed lines indicate the values of NSI parameters
for which COHERENT would not be able to resolve the LMA-D degeneracy, see appendix A for
details.

this configuration we find that the LMA-D solution can be ruled out (for NSI with up or

with down quarks) at high CL. In particular we obtain ��2
light future(LMA-D) > 45 (80) for

NSI with up (down) quarks. This is obvious from Fig. 7, where we show the allowed regions

in the plane of ✏u,Vee and ✏u,Vµµ from oscillations together with the 4 degenerate solutions from

COHERENT (same as in Fig. 5). The regions from oscillations are diagonal bands in this

plane, since oscillations determine only the di↵erence ✏u,Vee � ✏u,Vµµ . We see that the band

corresponding to the LMA-D region is far away from the COHERENT solutions and can

therefore be excluded by the combination. Consequently, in Fig. 6 only the results obtained

for the LMA solution appear. The corresponding allowed ranges at 90% CL are reported

in Table 1.

For the LMA solution, comparing to the present bounds from oscillations (see Fig. 4),

we see that no significant improvement is expected in the determination of the flavor-

changing NSI parameters. The main impact of COHERENT is in the determination of

the flavor diagonal ones: as it provides information on ✏q,Vee and ✏q,Vµµ , the combination with

oscillations allows for the independent determination of the three flavor-diagonal couplings.

However, three minima still remain for the combined chi-squared, one global and two

quasi-degenerate local. This is explained as follows. First, COHERENT is completely

insensitive to ✏f,V⌧⌧ , as shown in Eq. (4.3). This means that ✏f,Vµµ can be di↵erent from zero,

as long as ✏f,V⌧⌧ is set accordingly in order to respect the bounds from oscillations, which

constrain ✏f,V⌧⌧ � ✏f,Vµµ ⇡ 0. Second, the shape of �2
COH, as shown in Fig. 5, has four separate

minima in the plane of ✏f,Vee and ✏f,Vµµ . As can be seen from Fig. 7, the position of the
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sensitivity estimate for
the COHERENT proposal
1509.08702  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•cannot be resolved by any oscillation 
experiment

•NC neutrino scattering experiments are needed 
(at low energy, e.g. coherent scattering)  

•requires NSI of order GF  
points towards „light mediators“ (below EW)

Generalized mass ordering degeneracy

Farzan, 15; Farzan, Shoemaker, 15

Coloma et al, 1701.04828
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Summary

•CP phase:  
values of π < δ < 2π preferred over 0 < δ < π 
CP conservation allowed at 70% CL → be patient!

•mass ordering: no significant preference  
(hints for normal ordering from atmospheric neutrinos 
and maybe cosmology)  
upcoming experiments: JUNO, PINGU, ORCA

•non-standard neutrino interactions: NSI ~ GF 
introduce degeneracy which makes determination of 
mass ordering by oscillations impossible 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supplementary slides
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3-flavour mixing - global fit as of fall 2016

Normal Ordering (best fit) Inverted Ordering (��2 = 0.83) Any Ordering

bfp ±1� 3� range bfp ±1� 3� range 3� range

sin2 ✓12 0.306+0.012
�0.012 0.271 ! 0.345 0.306+0.012

�0.012 0.271 ! 0.345 0.271 ! 0.345

✓12/
� 33.56+0.77

�0.75 31.38 ! 35.99 33.56+0.77
�0.75 31.38 ! 35.99 31.38 ! 35.99

sin2 ✓23 0.441+0.027
�0.021 0.385 ! 0.635 0.587+0.020

�0.024 0.393 ! 0.640 0.385 ! 0.638

✓23/
� 41.6+1.5

�1.2 38.4 ! 52.8 50.0+1.1
�1.4 38.8 ! 53.1 38.4 ! 53.0

sin2 ✓13 0.02166+0.00075
�0.00075 0.01934 ! 0.02392 0.02179+0.00076

�0.00076 0.01953 ! 0.02408 0.01934 ! 0.02397

✓13/
� 8.46+0.15

�0.15 7.99 ! 8.90 8.49+0.15
�0.15 8.03 ! 8.93 7.99 ! 8.91

�CP/
� 261+51

�59 0 ! 360 277+40
�46 145 ! 391 0 ! 360

�m2
21

10�5 eV2 7.50+0.19
�0.17 7.03 ! 8.09 7.50+0.19

�0.17 7.03 ! 8.09 7.03 ! 8.09

�m2
3`

10�3 eV2 +2.524+0.039
�0.040 +2.407 ! +2.643 �2.514+0.038

�0.041 �2.635 ! �2.399


+2.407 ! +2.643
�2.629 ! �2.405

�

Table 1. Three-flavor oscillation parameters from our fit to global data after the NOW 2016 and
ICHEP-2016 conference. The numbers in the 1st (2nd) column are obtained assuming NO (IO),
i.e., relative to the respective local minimum, whereas in the 3rd column we minimize also with
respect to the ordering. Note that �m

2
3` ⌘ �m

2
31 > 0 for NO and �m

2
3` ⌘ �m

2
32 < 0 for IO.

the statistical distribution of the marginalized ��

2 for �
CP

and ✓

23

(and consequently the

corresponding CL intervals) may be modified [54, 55]. In Sec. 4 we will discuss and quantify

these e↵ects.

In Tab. 1 we list the results for three scenarios. In the first and second columns we

assume that the ordering of the neutrino mass states is known a priori to be Normal

or Inverted, respectively, so the ranges of all parameters are defined with respect to the

minimum in the given scenario. In the third column we make no assumptions on the

ordering, so in this case the ranges of the parameters are defined with respect to the global

minimum (which corresponds to Normal Ordering) and are obtained marginalizing also

over the ordering. For this third case we only give the 3� ranges. In this case the range

of �m

2

3`

is composed of two disconnected intervals, one containing the absolute minimum

(NO) and the other the secondary local minimum (IO).

Defining the 3� relative precision of a parameter by 2(xup � x

low)/(xup + x

low), where

x

up (xlow) is the upper (lower) bound on a parameter x at the 3� level, we read 3� relative

precision of 14% (✓
12

), 32% (✓
23

), 11% (✓
13

), 14% (�m

2

21

) and 9% (|�m

2

3`

|) for the various
oscillation parameters.

2.3 Results: leptonic mixing matrix and CP violation

From the global �2 analysis described in the previous section and following the procedure

outlined in Ref. [56] one can derive the 3� ranges on the magnitude of the elements of the

– 6 –
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Leptonic unitarity triangle
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Leptonic unitarity triangle
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very far from CKM precision!

need subsequent generation of experiments (T2HK, DUNE) 
to say something meaningful on CP phase
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Minor tension between solar neutrinos and KamLAND
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Figure 5. Left: Allowed parameter regions (at 1�, 90%, 2�, 99% and 3� CL for 2 dof) from the
combined analysis of solar data for GS98 model (full regions with best fit marked by black star) and
AGSS09 model (dashed void contours with best fit marked by a white dot), and for the analysis of
KamLAND data (solid green contours with best fit marked by a green star) for fixed ✓13 = 8.5�.
Right: ��

2 dependence on �m

2
21 for the same three analyses after marginalizing over ✓12.

for sake of completeness we show in Fig. 5 the quantification of this tension in our present

global analysis. As seen in the figure, the best fit value of �m

2

21

of KamLAND lays at the

boundary of the 2� allowed range of the solar neutrino analysis.

Also for illustration of the independence of these results with respect to the solar

modeling, the solar neutrino regions are shown for two latest versions of the Standard

Solar Model, namely the GS98 and the AGSS09 models [61] obtained with two di↵erent

determinations of the solar abundances [62].

3.2 �m

2

3`

determination in LBL accelerator experiments versus reactors

Figure 6 illustrates the contribution to the present determination of�m

2

3`

from the di↵erent

data sets. In the left panels we focus on the determination from long baseline experiments,

which is mainly from ⌫

µ

disappearance data. We plot the 1� and 2� allowed regions (2 dof)

in the dominant parameters �m

2

3`

and ✓

23

. As seen in the figure, although the agreement

between the di↵erent experiments is reasonable, some “tension” starts to appear in the

determination of both parameters among the LBL accelerator experiments. In particular we

see that the recent results from NO⌫A, unlike those from T2K, favor a non-maximal value

of ✓
23

. It is important to notice that in the context of 3⌫ mixing the relevant oscillation

probabilities for the LBL accelerator experiments also depend on ✓

13

(and on the ✓

12

and �m

2

21

parameters which are independently well constrained by solar and KamLAND

data). To construct the regions plotted in the left panels of Fig. 6, we adopt the procedure

– 9 –



T. Schwetz @ Moriond EW, 201735

Comparison with Bari group
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FIG. 1: Global 3⌫ oscillation analysis. Projections of the �2 function onto the parameters �m2, |�m2|, sin2 ✓ij , and �, for NO
(blue) and IO (red). In each panel, all the undisplayed parameters are marginalized, and the o↵set ��2

IO�NO = 3.6 is included.

p 2 [0, 1] linking any two competing hypotheses [35]). Explicit parametric connections have been worked out for
medium-baseline reactor neutrino oscillations, in terms of the mixing variable sin2 ✓12 (swapping octants between NO
and IO for �m2 > 0 in vacuum [36]) and of an empirical variable ↵ (ranging in [�1, +1] from IO to NO [37]). The
above considerations further support our adoption of Eq. (8) as a reasonable metric for the IO–NO discrimination
[25], akin to a one-parameter estimation test. For a discussion of further statistical issues and possible alternative
approaches, see also [3, 4, 38–40] and refs. therein.

With present data, the current statistical sensitivity associated to ��2
IO�NO tests appears to be limited to ⇠ 2�

(see Sec. III). Therefore, we shall conservatively report ��2 bounds on mass-mixing parameters both by separately

minimizing the �2 in NO and IO (discarding the relative ��2
IO�NO di↵erence), and by further minimizing the �2

over any ordering (including the ��2
IO�NO information), with a discussion of the relative di↵erences in the results.

Such a format has been adopted in presenting the oscillation parameter ranges in [11, 41], and is extended herein to
nonoscillation parameters.

A. Neutrino oscillations

An analysis of neutrino oscillation data has been previously presented in [9], to which we refer the reader for a
discussion of the adopted methodology and earlier literature. A partial update of [9], including novel accelerator
data shown in mid-2016, was reported in [10]. The more complete update presented herein (circa 2017) includes, with
respect to [9]: (i) the latest results from the long-baseline accelerator experiments T2K [42] and NOvA [43, 44]; (ii) the
latest far/near spectral ratio from the reactor neutrino experiment Daya Bay [45]; (iii) the most recent atmospheric
neutrino data from the Super-Kamiokande (SK) phase IV [46, 47]. The results of our oscillation data analysis are
reported graphically in Fig. 1 and numerically in Table I.

Figure 1 shows the �2 curves in terms of the six oscillation parameters (�m2, �m2, sin2 ✓12, sin
2 ✓13, sin

2 ✓23, �),
for both NO (blue) and IO (red). We find an overall preference for NO, quantified by the �2 di↵erence

��2
IO�NO = 3.6 (all oscill. data) , (9)

that is explicitly shown as an o↵set of the IO curves. The o↵set is of some relevance in the analysis of absolute mass
observables, as shown later.
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and IO for �m2 > 0 in vacuum [36]) and of an empirical variable ↵ (ranging in [�1, +1] from IO to NO [37]). The
above considerations further support our adoption of Eq. (8) as a reasonable metric for the IO–NO discrimination
[25], akin to a one-parameter estimation test. For a discussion of further statistical issues and possible alternative
approaches, see also [3, 4, 38–40] and refs. therein.
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IO�NO information), with a discussion of the relative di↵erences in the results.

Such a format has been adopted in presenting the oscillation parameter ranges in [11, 41], and is extended herein to
nonoscillation parameters.

A. Neutrino oscillations

An analysis of neutrino oscillation data has been previously presented in [9], to which we refer the reader for a
discussion of the adopted methodology and earlier literature. A partial update of [9], including novel accelerator
data shown in mid-2016, was reported in [10]. The more complete update presented herein (circa 2017) includes, with
respect to [9]: (i) the latest results from the long-baseline accelerator experiments T2K [42] and NOvA [43, 44]; (ii) the
latest far/near spectral ratio from the reactor neutrino experiment Daya Bay [45]; (iii) the most recent atmospheric
neutrino data from the Super-Kamiokande (SK) phase IV [46, 47]. The results of our oscillation data analysis are
reported graphically in Fig. 1 and numerically in Table I.
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Figure 10. Impact of our re-analysis of SK atmospheric neutrino data [65] (70 bins in energy and
zenith angle) on the determination of sin2 ✓23, �CP, and the mass ordering. The impact on all other
parameters is negligible.

• Regarding the octant of ✓
23

, for IO all LBL accelerator experiments are better de-

scribed with ✓

23

> 45�, adding up to a ⇠ 1.8� preference for that octant. Conversely,

for NO ✓

23

< 45� is favored at ⇠ 1�.

• From Fig. 9 we see that the “hint” for a CP phase around 270� is mostly driven by

T2K data, with some extra contribution from NO⌫A in the case of IO. Within the

present precision the favored ranges of �
CP

in each ordering by the combination of

LBL accelerator experiments are pretty independent on the inclusion of the �m

2

3`

information from reactors.

3.3 Analysis of Super-Kamiokande atmospheric data

In all the results discussed so far we have not included information from Super-Kamiokande

atmospheric data. The reason is that our oscillation analysis cannot reproduce that of the

collaboration presented in their talks in the last two years (see for example Ref. [66] for

their latest unpublished results).

Already since SK2 the Super-Kamiokande collaboration has been presenting its ex-

perimental results in terms of a growing number of data samples. The rates for some of

those samples cannot be predicted (and therefore included in a statistical analysis) with-

out a detailed simulation of the detector, which can only be made by the experimental

collaboration itself. Our analysis of Super-Kamiokande data has been always based on the

“classical” set of samples for which our simulations were reliable enough: sub-GeV and

multi-GeV e-like and µ-like fully contained events, as well as partially contained, stopping

and through-going muon data, each divided into 10 angular bins for a total of 70 energy and

zenith angle bins (details on our simulation of the data samples and the statistical analysis
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•preference for NO at 1.9 to 2.1σ

•driven by atmospheric neutrino analisys Δ𝝌2 = 3.6

•contribution from cosmology for all considered 
data sets Δ𝝌2 < 1

11

1.4− 1.2− 1.0− 0.8− 0.6− 0.4− 0.2− 0.0−
3.0−

2.5−

2.0−

1.5−

1.0−

0.5−

0.0

20

40

60

80

100

120

140

160

180

200

23θ 2sin

1−10 1

13θ 2
sin

3−10

2−10

1−10

1

23θ 2sin

1−10 1

13θ 2
sin

3−10

2−10

1−10

1
 + CosmoββνOscill. + 0 #9

Separate
NO IO,

Any
Ordering

 (eV)Σ  (eV)Σ

 (e
V)

ββ
m

FIG. 8: As in Fig. 4, but including the �2(m��) function from Fig. 2 and the �2(⌃) function from Fig. 3 (for case #9).
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FIG. 9: As in Fig. 4, but including the �2(m��) function from Fig. 2 and the �2(⌃) function from Fig. 3 (for case #6).

Figure 9 corresponds to the most constraining cosmological case (#6) in Table II. In this case, the allowed bands
are almost vertically cut by the upper bounds on ⌃ from cosmological data only, with no significant contribution from
0⌫�� constraints. Indeed, the allowed values of m�� are well below the 0⌫�� bounds in Eq. (13). Note that, in the
right panel, there is no region allowed at 2�, since the the global ��2

IO�NO exceeds 4 units.
Table III reports the list of global ��2

IO�NO values, numbered according to the cosmological cases in Table II.
These values are not always equal to the algebraic sum of the ��2 contributions from oscillation data in Eq. (9) and
cosmological data in Table II, since the best-fit points in the plane (⌃, m��) may be slightly readjusted in NO and
IO in the global combination, leading to a small extra variation (��2 <⇠ 0.4). This minor e↵ect in the combination of
0⌫�� and cosmological data is statistically insignificant at present, but might become more relevant with future data.
In any case, Table III confirms that an overall preference for NO over IO emerges from the combination of oscillation
and nonoscillation data, at the level of 1.9–2.1�. This is one of the main results of our work.

TABLE III: Values of ��2
IO�NO from the global analysis of oscillation and non oscillation data (numbered according to the adopted

cosmological datasets as in Table II), to be compared with the value 3.6 from oscillation data only [Eq. (9)]. An overall preference emerges
for NO, at the level of 1.9–2.1�.

# 1 2 3 4 5 6 7 8 9 10 11 12

��2
IO�NO 4.3 3.8 4.4 4.2 3.9 4.4 3.6 3.7 3.8 3.7 3.8 3.9

Comparison with Bari group
Cappozzi et al., 1703.04471
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• strong dependence on true ordering and δCP

• 3σ possible for the most favourable combinations

MO sensitivity of existing experiments
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FIG. 12: The left (right) panel shows the median sensitivity in number of sigmas for rejecting the IO

(NO) if the NO (IO) is true for di↵erent facilities as a function of the date. The width of the bands

correspond to di↵erent true values of the CP phase � for NO⌫A and LBNE, di↵erent true values

of ✓23 between 40� and 50� for INO and PINGU, and energy resolution between 3%
p
1 MeV/E

and 3.5%
p
1 MeV/E for JUNO. For the long baseline experiments, the bands with solid (dashed)

contours correspond to a true value for ✓23 of 40� (50�). In all cases, octant degeneracies are fully

searched for.

plots in some detail.
In order to keep the number of MC simulations down to a feasible level, we use the

Gaussian approximation whenever it is reasonably justified. As we have shown in Sec. 4,
this is indeed the case for PINGU, INO, and JUNO. With respect to the LBL experiments,
even though we have seen that the agreement with the Gaussian case is actually quite good
(see Fig. 11), there are still some deviations, in particular in the case of NO⌫A. Consequently,
in this case we have decided to use the results from the full MC simulation whenever possible.
The results for the NO⌫A experiment are always obtained using MC simulations, while in the
case of LBNE-10 kt the results from a full MC are used whenever the number of simulations
does not have to exceed 4⇥105 (per value of �). As was mentioned in the caption of Fig. 11,
this means that, in order to reach sensitivities above ⇠ 4� (for the median experiment),
results from the full MC cannot be used. In these cases, we will compute our results using
the Gaussian approximation instead. As mentioned in App. A, the approximation is expected
to be quite accurate precisely for large values of T0. Finally, for LBNE-34 kt, all the results
have to be computed using the Gaussian approximation, since the median sensitivity for this
experiment reaches the 4� bound already for one year of exposure only, even for the most
unfavorable values of �.

For each experiment, we have determined the parameter that has the largest impact on
the results, and we draw a band according to it to show the range of sensitivities that should
be expected in each case. Therefore, we want to stress that the meaning of each band may
be di↵erent, depending on the particular experiment that is considered. In the case of long
baseline experiments (NO⌫A, LBNE-10 kt and LBNE-34 kt), the results mainly depend on
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MO - compilation of upcoming experiments

Blennow, Coloma, Huber, TS, 1311.1822 [not shown: ORCA and HyperK (atm)]


