

Top properties at the LHC

Mark Owen The University of Glasgow

On behalf of the ATLAS & CMS collaborations

52nd Rencontres de Moriond EW 2017

Top properties at the LHC

Why the top quark?

- In the Standard Model (SM) it's the only quark:
 - 1. With a natural mass:

$$m_{top} = y_t v / \sqrt{2} \approx 173 \text{ GeV} \Rightarrow y_t \approx 1$$

- Hence, large correction to the Higgs mass:
- Top quark could be place to see new physics!
- 2. That decays before hadronizing:

$$\tau_{had} \approx 2 \times 10^{-24} s$$

 $\tau_{top} \approx 5 \times 10^{-25} s$

• Chance to study a 'bare' quark.

Why top properties?

- Top quark mass is a fundamental parameter of the Standard Model:
 - Precise measurement needed for checking consistency of the SM.

- Other properties of the top quark (electroweak coupling, production asymmetries) are predicted by SM.
 - Precise measurements could reveal the SM breaking down.

Top production & decay

• Top production dominated by QCD production. EW production provides direct access to Wtb vertex:

• In SM top decays to Wb:

Outline

Outline

- W bosons can be produced with left-handed, right-handed or longitudinal polarisation.
- The top decay vertex in the SM, Wtb, is characterised by the (V A) structure → fractions of polarisation states are well predicted.
- Can probe this by measuring the angular distributions of the W boson decay products:

• New physics could be present in the vertex & change the produced polarisation.

• Use top-quark pair events & reconstruct full system:

Largest systematic uncertainties: jet energy scale (JES), Monte Carlo (MC) modelling.

arXiv:1605.09047

Top properties at the LHC

W boson helicity fractions

arXiv:1612.02577

- Single-top t-channel production sensitive to Wtb vertex in both production and decay.
- SM predicts non-zero polarisation of single-top quark production. Full system can be parameterised in terms of polarisation & 6 independent W-boson spin observables.

a a'	Asymmetry	Angular observable	Polarisation observable	SM prediction
^q ^q	$A_{ m FB}^\ell$	$\cos heta_\ell$	$\frac{1}{2} \alpha_{\ell} P$	0.45
	$A_{ m FB}^{tW}$	$\cos heta_W \cos heta_\ell^*$	$\frac{3}{8}P(F_{\rm R}+F_{\rm L})$	0.10
$\chi V' \neq c$	$A_{\rm FB}$	$\cos heta_\ell^*$	$\frac{3}{4}\langle S_3\rangle = \frac{3}{4}\left(F_{\rm R}-F_{\rm L}\right)$	-0.23
V	$A_{\rm EC}$	$\cos heta_\ell^*$	$\frac{3}{8}\sqrt{\frac{3}{2}}\langle T_0 \rangle = \frac{3}{16} (1 - 3F_0)$	-0.20
b t	$A_{ m FB}^T$	$\cos heta_\ell^T$	$\frac{3}{4}\langle S_1\rangle$	0.34
6	$A_{ m FB}^N$	$\cos heta_{\ell}^N$	$-\frac{3}{4}\langle S_2\rangle$	0
a 2000	$A_{ m FB}^{T,\phi}$	$\cos heta^*_\ell \cos \phi^*_T$	$-\frac{2}{\pi}\langle A_1\rangle$	-0.14
9 b	$A_{ m FB}^{N,\phi}$	$\cos heta_\ell^* \cos \phi_N^*$	$\frac{2}{\pi}\langle A_2 \rangle$	0
<u>arXiv:1702.08309</u>				arXiv:1508.0459 arXiv:1005.5382

- Single-top t-channel production sensitive to Wtb vertex in both production and decay.
- SM predicts non-zero polarisation of single-top quark production. Full system can be parameterised in terms of polarisation & 6 independent W-boson spin observables.

- Kinematic cuts used to separate single-top from W and top-pair backgrounds.
- Angular asymmetries sensitive to top polarization and W boson spin observable <S₂>:

Events

10000

5000

-1

Data 2012

Wt.tb

W+jets

Multijet

VV.Z+jets

Stat.+Multijet unc.

-0.8 -0.6 -0.4 -0.2

ATLAS

 $\sqrt{s} = 8 \text{ TeV}, 20.2 \text{ fb}^{-1}$

Signal region

0.8

cosθ^N

0.6

0.2

0.4

0

 $\langle S_2 \rangle = 0$

 $\langle S_2 \rangle = 0.06 \pm 0.05$

ATLAS Data:

$$P = 0.97 \pm 0.12$$

 CMS Data:
 $P = 0.52 \pm 0.22$

<u>arXiv:1702.08309</u> <u>arXiv:1511.02138</u>

Largest systematic uncertainties: JER, JES, MC modelling.

Top properties at the LHC

 Interpret these measurements by considering general expression for the Wtb vertex:

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} (V_{L}P_{L} + V_{R}P_{R}) t W_{\mu}^{-} - \frac{g}{\sqrt{2}} \bar{b} \frac{i\sigma^{\mu\nu}q_{\nu}}{m_{W}} (g_{L}P_{L} + g_{R}P_{R}) t W_{\mu}^{-} + \text{h.c.}$$

SM: $V_{L} = V_{tb}$ $V_{R} = 0$ $g_{L} = 0$ $g_{R} = 0$

 Interpret these measurements by considering general expression for the Wtb vertex:

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} (V_{\rm L} P_{\rm L} + V_{\rm R} P_{\rm R}) t W_{\mu}^{-} - \frac{g}{\sqrt{2}} \bar{b} \frac{i\sigma^{\mu\nu} q_{\nu}}{m_{\rm W}} (g_{\rm L} P_{\rm L} + g_{\rm R} P_{\rm R}) t W_{\mu}^{-} + \text{h.c.}$$

SM: $V_{L} = V_{tb}$ $V_{R} = 0$ $g_{L} = 0$ $g_{R} = 0$

ATLAS W polarization:

arXiv:1702.08309

arXiv:1610.03545

• Interpret these measurements by considering general expression for the Wtb vertex:

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} (V_{\rm L} P_{\rm L} + V_{\rm R} P_{\rm R}) t W_{\mu}^{-} - \frac{g}{\sqrt{2}} \bar{b} \frac{i\sigma^{\mu\nu} q_{\nu}}{m_{\rm W}} (g_{\rm L} P_{\rm L} + g_{\rm R} P_{\rm R}) t W_{\mu}^{-} + \text{h.c.}$$

SM: $V_{L} = V_{tb}$ $V_{R} = 0$ $g_{L} = 0$ $g_{R} = 0$

ATLAS single-top: $Im(g_R) \in [-0.18, 0.06]$

arXiv:1702.08309

arXiv:1610.03545

 Interpret these measurements by considering general expression for the Wtb vertex:

ATLAS W polarization:

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} (V_{\rm L} P_{\rm L} + V_{\rm R} P_{\rm R}) t W_{\mu}^{-} - \frac{g}{\sqrt{2}} \bar{b} \frac{i\sigma^{\mu\nu} q_{\nu}}{m_{\rm W}} (g_{\rm L} P_{\rm L} + g_{\rm R} P_{\rm R}) t W_{\mu}^{-} + \text{h.c.}$$

SM: $V_{L} = V_{tb}$ $V_{R} = 0$ $g_{L} = 0$ $g_{R} = 0$

ATLAS single-top: $Im(g_R) \in [-0.18, 0.06]$

Top properties at the LHC

• Interpret these measurements by considering general expression for the Wtb vertex:

ATLAS W polarization:

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} (V_{L}P_{L} + V_{R}P_{R}) t W_{\mu}^{-} - \frac{g}{\sqrt{2}} \bar{b} \frac{i\sigma^{\mu\nu}q_{\nu}}{m_{W}} (g_{L}P_{L} + g_{R}P_{R}) t W_{\mu}^{-} + \text{h.c.}$$

SM: $V_{L} = V_{tb}$ $V_{R} = 0$ $g_{L} = 0$ $g_{R} = 0$

ATLAS single-top: $Im(g_R) \in [-0.18, 0.06]$

Top properties at the LHC

Outline

ttV Production

- Large datasets give access to rare tt+W and tt+Z processes.
 - ttZ: Direct probe of top-Z coupling (new physics?).
 - ttW: Important background to new physics searches.

- Use multi-lepton final states to reduce background:
 - 2 same-sign charge leptons, 3 or 4 lepton final states.

ttV Production

- 2 same-sign charge leptons, 3 or 4 lepton final states.
 - Split selected events according to number of jets & b-jets.
 - Control regions used to check WZ and ZZ backgrounds.

CMS-PAS-TOP-16-017

ttV Production

Fit to the many signal-regions to simultaneously extract ttW and ttZ cross-sections:

Measurements still statistics limited - looking forward to results with higher statistics.

arXiv:1609.01599

<u>CMS-PAS-TOP-16-017</u>

Top properties at the LHC

Outline

- Dilepton channel: two neutrinos in the final state, system is under-constrained.
 - Optimised selection on pT(lb) to reduce uncertainties.
 - Use m(lb) as top mass sensitive variable.

Largest systematic uncertainties:

JES (0.54 GeV), MC modelling (0.35 GeV), bJES (0.3 GeV).

 $m_{\text{top}} = 172.99 \pm 0.41 \text{ (stat)} \pm 0.74 \text{ (syst) GeV}$

Most precise measurement in dilepton channel to date

- First measurement at 13 TeV following 8 TeV lepton+jets measurement:
 - Full reconstruction of top-pair system and 2D fit for m_t and jet energy scale-factor (JSF):

 $m_{\rm t} = 172.62 \pm 0.38 \, ({\rm stat.+JSF}) \pm 0.70 \, ({\rm syst.}) \, {\rm GeV}$

- First measurement at 13 TeV following 8 TeV lepton+jets measurement:
 - Full reconstruction of top-pair system and 2D fit for m_t and jet energy scale-factor (JSF):

 $m_{\rm t} = 172.62 \pm 0.38 \, ({\rm stat.+JSF}) \pm 0.70 \, ({\rm syst.}) \, {\rm GeV}$

- Largest systematic uncertainties: JES (0.51 GeV) & MC modelling (0.40 GeV).
- Not yet at run 1 precision, but excellent agreement with CMS run 1 combination: $m_t = 172.44 \pm 0.13 \pm 0.47 \text{ GeV}$

Top properties at the LHC

ATLAS+CMS Preliminary	LHC <i>top</i> WG	m _{top} summary, √s = 7-8 TeV	Aug 2016		
World Comb. Mar 2014, [7]					
stat		total stat			
$m_{top} = 173.34 \pm 0.76 (0.10)$	36 ± 0.67) GeV	m · total (atat · avat)	La Pot		
ATLAS I+iets (*)		172 31 + 1 55 (0 75 + 1 35)	TeV [1]		
ATLAS dilepton (*)		$173.09 \pm 1.63(0.64 \pm 1.50)$	7 TeV [1]		
CMS I+iets		$173.49 \pm 1.06(0.43 \pm 0.97)$	7 TeV [2]		
CMS, dilepton		$172.50 \pm 1.52 (0.43 \pm 1.46)$	7 TeV [4]		
CMS, all jets		$173.49 \pm 1.41 \ (0.69 \pm 1.23)$	7 TeV [5]		
LHC comb. (Sep 2013)		173.29 ± 0.95 (0.35 ± 0.88)	7 TeV [6]		
World comb. (Mar 2014)	⊢ ÷ − 	173.34 ± 0.76 (0.36 ± 0.67)	1.96-7 TeV [7]		
ATLAS, I+jets		172.33 ± 1.27 (0.75 ± 1.02)	7 TeV [8]		
ATLAS, dilepton	┝──┼═╸┼──┤	173.79 ± 1.41 (0.54 ± 1.30)	7 TeV [8]		
ATLAS, all jets	-	175.1 ± 1.8 (1.4 ± 1.2)	7 TeV [9]		
ATLAS, single top		172.2 ± 2.1 (0.7 ± 2.0)	8 TeV [10]		
ATLAS, dilepton		$172.99 \pm 0.85 \ (0.41 \pm 0.74)$	8 TeV [11]		
ATLAS, all jets	┝╌┼╺╸┼╌┥	173.80 ± 1.15 (0.55 ± 1.01)	8 TeV [12]		
ATLAS comb. (^{June 2016})	 ▼ i l	172.84 ± 0.70 (0.34 ± 0.61)	7+8 TeV [11]		
CMS, I+jets	<mark>⊢ +● − </mark>	$172.35 \pm 0.51 \ (0.16 \pm 0.48)$	8 TeV [13]		
CMS, dilepton	├ ── ┼●├ ─── ┤	172.82 ± 1.23 (0.19 ± 1.22)	8 TeV [13]		
CMS, all jets	┠┼●┼┫	172.32 ± 0.64 (0.25 ± 0.59)	8 TeV [13]		
CMS, single top	┠┼╼╼╞┫	172.60 ± 1.22 (0.77 ± 0.95)	8 TeV [14]		
CMS comb. (Sep 2015)	┠╌┝┽╌┨	172.44 ± 0.48 (0.13 ± 0.47)	7+8 TeV [13]		
	[1] ATLAS [2] ATLAS	S-CONF-2013-046 [6] ATLAS-CONF-2013-102 S-CONF-2013-077 [7] arXiv:1403.4427	[11] arXiv:1606.02179 [12] ATLAS-CONF-2016-064		
(^) Superseded by results shown below the line	[3] JHEP [4] Eur.Pt	12 (2012) 105 [8] Eur.Phys.J.C75 (2015) 330 vys.J.C72 (2012) 2202 [9] Eur.Phys.J.C75 (2015) 158	[13] Phys.Rev.D93 (2016) 072004 [14] CMS-PAS-TOP-15-001		
	[5] Eur.Pł	ys.J.C74 (2014) 2758 [10] ATLAS-CONF-2014-055			
165 170	175		185		
105 170	1/5		105		
m _{top} [GeV]					

• Nearing completion of run 1 results: combination needed to exploit measurements.

Summary

- Top quark is still the heaviest particle we know about.
- Provides a potential window to new physics.
- Well understood run 1 LHC dataset continues to yield precise measurements.
- First run 2 measurements available: no sign for deviations beyond the SM.
- Run 2 offers unprecedented statistics & opportunities: must exploit statistics to reduce systematics.

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP/index.html http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/TOP/index.html

Backup

Top properties at the LHC

ATLAS ttV

- 2 same-sign charge leptons, 3 or 4 lepton final states.
 - Split selected events according to lepton-pairings & number of b-jets.
 - Use control regions to constrain WZ & ZZ backgrounds.

• Statistics limited - big scope improvements with 2016 dataset.

CMS ttV

Top properties at the LHC

Top quark mass difference

• Test CPT invariance by measuring:

 $\Delta m_t = m_t - m_{\bar{t}}$

 Use charge of lepton in e/µ+jets events to tag charge of topquark:

 $\Delta m_{\rm t} = -0.15 \pm 0.19 \,({\rm stat}) \pm 0.09 \,({\rm syst}) \,{\rm GeV}$

Statistics limited (largest systematic: b vs b response)

<u>arXiv:1610.09551</u>

• Top quark mass critical to understanding if SM is valid to high scales:

CMS single top mass

- Measurement in single-top t-channel events:
 - Require presence of forward jet to enhance t-channel signal:

- Then reconstruct top from b, lepton & neutrino.
- Largest systematic uncertainties: JES, MC modelling, fit calibration.

CMS single top mass

- Measurement in single-top t-channel events:
 - Require presence of forward jet to enhance t-channel signal:

- Then reconstruct top from b, lepton & neutrino.
- Largest systematic uncertainties: JES, MC modelling, fit calibration.

 $m_t = 172.95 \pm 0.77 \; (\text{stat})^{+0.97}_{-0.93} \; (\text{syst}) \; \text{GeV}$

arXiv:1703.02530

CMS top mass 13 TeV

 13 TeV lepton+jets measurement: requirement on goodness of kinematic fit used to select well reconstructed events:

 Reconstructed W boson mass (from 2 light jets) then used to fit the jet energy scale factor.

ATLAS dilepton top mass

- New measurement in the dilepton channel at 8 TeV.
- Apply cut on pT(lb) increases fraction of events where correct pairing of lepton & b are selected & reduces total uncertainty.

CMS mass combination

• Using all 'alternative' measurements not included in the standard combination:

Good agreement with standard measurements.

However, very small gain relative to standard combination

CMS-PAS-TOP-15-012

Search for anomalous Wtb couplings

 Train multivariate boosted-decision trees to separate between SM single-top and single-top with non-SM Wtb couplings:

arXiv:1610.03545

Search for anomalous Wtb couplings

Top properties at the LHC

• Angular variables in single top polarisation:

The W-boson momentum q in the top-quark rest frame defines the z-axis; the top-quark spin direction s_t, taken along the spectator-quark momentum in the top-quark rest frame, defines the x-z plane. The polar and azimuthal angles of the charged-lepton momentum p_{ℓ} in the W-boson rest frame are labelled θ_{ℓ}^* and ϕ_{ℓ}^* , respectively. The normal and transverse axes are defined relatively to q and st according to $N=s_t \times q$ and $T=q \times N$; they are along the -y and x axes of the coordinate system, respectively. The azimuthal angles ϕ_N^* and ϕ_T^* of the charged lepton in the W-boson rest frame are defined relatively to the N and T axes, respectively $(\phi_T^* = \phi_\ell^*)$, while θ_ℓ^N and Θ_{ℓ}^{T} (not shown in the figure) are the relative angles between p_{ℓ} and the N and T axes, respectively.

• Sensitivity to anomalous couplings:

 When extracting limits on Im(g_R), correlation between observables is accounted for (-0.05).

arXiv:1702.08309

• All measured asymmetries:

• Fitted distributions for the ATLAS measurement:

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta^*} = \frac{3}{4} \left(1 - \cos^2\theta^* \right) F_0 + \frac{3}{8} \left(1 - \cos\theta^* \right)^2 F_L + \frac{3}{8} \left(1 + \cos\theta^* \right)^2 F_R$$

arXiv:1612.02577

Top properties at the LHC