Semitauonic B decays, a window on new Physics

1

GUY WORMSER

LAL

CNRS/IN2P3, PARIS SACLAY UNIVERSITY

Why semitauonic decays are interesting?

- As tree level decays, they combine the advantages :
 - Very precise prediction from SM :R(D*) known to 2% precision, using $R(D^*) = BR(B^{\circ} \rightarrow D^* \tau \nu) / BR(B^{\circ} \rightarrow D^* \mu \nu)$
 - O Abundant channel BR(B^o→D*τν)=1,24%, one of the largest individual BR
 - o Sensitivity to new physics: (simplest realization) A charged Higgs will automatically couple more to the τ . LFU violation can also occur through other mechanisms (leptoquarks,..)
- They offer several hadronisation implementations:
 - o D*, D°, D+, D_s, Λ_c , J/ ψ
 - Differing not only by various properties of the spectator particle but also

its spin o (D°,D+,D_s), 1 (D* and J/ ψ) and $\frac{1}{2}$ ($\Lambda_c!!$)

$R(D^*)$ with $\tau \rightarrow \mu \nu \nu$

Using the known B flight direction, approximate the B momentum using $y\beta_{z,vis}=y\beta_{z,B}$:

- Estimate gives ~ 18% resolution on B momentum, but preserves shapes of already-broad distributions of to m^2_{miss} , E^*_μ and q^2
- 3d MC-template based binned fit to $m_{miss}^2~vs~E_{\mu}^*$ in coarse q^2 bins

Fit Result

- Shown above: signal fit to "signal" data passing isolation selection
- Result $\frac{N_{\tau}}{N_{\mu}} = (4.32 \pm 0.37) \times 10^{-2}$, $R(D^*) = 0.336 \pm 0.027 \pm 0.030$
- $N(\bar{B}^0 \to D^{*+}\mu^-\bar{\nu}_{\mu}) = 363,000 \pm 1600$

R(D*) status today

If WA is correct, 22% of the D*tv events are mediated by new physics!

New! $R(D^*)$ using τ hadronic decays in 3π Unusual features of this analysis

A semileptonic decay without (charged) lepton !!:

Amusing but more importantly ZERO background from normal semileptonic

decays!!!!

- The background leads to nice mass peaks and not the signal !!!
 - Amusing but more importantly provides key handles to control the various backgrounds
- Only 1 neutrino emitted at the τ vertex
 - The complete event kinematics can be reconstructed with reasonable precision
- But very large potential background from « bread and butter » $D*3\pi$ X decays; 100 times larger than the signal : A trick must be found!!

The detached vertex method

The 4σ requirement kills the D*3πX background by ~10³: the road to the treasure is open ©!!!

The second gate: the double charm background

8

The second gate consists of B° decays where the 3π vertex is transported away from the B° vertex by a charm carrier: D_s, D+ or D° (in that order of importance)

- This gate is thinner:
 - O Double Charm→3πX ~10 x signal

LHCb has three very good weapons to blow this gate away:

3π dynamics
Neutral isolation
Background partial reconstruction

Importance of the normalization channel $B^{\circ} \rightarrow D^{*}3\pi$

 Normalization as similar as possible to the signal to cancel production yield, BR uncertainties and systematics linked to trigger, PID, first selection cuts

• Absolute BR recently measured by BABAR with a precision of 4.3% (Phys.Rev. D94 (2016) no.9, 091101)

The importance of the « D_s-o-meter »

- The D_s meson is the highest background since the W decays dominantly in D_s and the D_s is a very rich source of 3π +X final states.
- At low mass, only η and η ' (red, green) contributions are peaking

$$\eta \rightarrow \pi^+\pi^- \pi^\circ$$
 and $\eta' \rightarrow \eta \pi^+\pi^ M_{\pi+\pi^-} < 415 \text{ MeV}$

- At the ρ mass where the signal lives $(\tau \rightarrow a_1; a_1 \rightarrow \rho \pi)$, only η' contributes $(\eta' \rightarrow \rho \gamma)$
- Using the low BDT region, one constraints the D_s decay model to be used at high BDT

Moriond ElectroWeak March 22

The anti-D_s BDT

- A BDT is constructed to get rid of the D_s background. It contains the following variables:
 - \times 3 π dynamics: min(m_{$\pi\pi$}), max(m_{$\pi\pi$}),
 - \times B dynamics: D*3π mass
 - **Partial reconstruction:** the 4 constraints from the 2 lines of flight allows to reconstruct fully the event in the background hypothesis (no neutrinos)
 - **Neutral isolation**: energy in a cone around the 3π direction
 - × Very D_s enriched at low BDT, good purity for signal at high BDT
- Opens the gate for search for BSM inside the events in addition to yields measurements

The control channels D_s, D^o, and D⁺

 $\pi\pi\pi$ mass in detached topology

Run 1, 3 fb⁻¹

 D° to K 3π peak : Antisolation cut

Signal extraction

The D_s→3π control channel is used to measure the ratio of D*D_s/D*D_s*/D*D_s** and to correct for their q² distribution

- A full fit is then performed at high BDT, as a 3D template binned fit of BDT,q² and τ lifetime.
- D*3π, D° background constrained by their signal in the control channels

Systematic uncertainties

External

- 4,3 % from BR(B°→D*3π) PDG 2016
- 2% from BR(B°→D*μν)

Internal

- MC statistics
- D_s,D⁺,D^o backgrounds
- Prompt B° backgrounds
- Stripping, Trigger
- o FF and τ decay model

In red: can be reduced with help from other experiments (BELLE, BES,..)

- Expected overall to be larger than statistical error for the first publication (soon to come)
- Room for progress exists on a longer timescale on both internal and external sources!

Conclusion and Perspectives

- Semitauonic B decays are a great tool to discover new physics: high SM precision, high rate and high sensitivity
- The exceptional LHCb capability to separate secondary and tertiary vertices open up the best road to study **the semitauonic decays of all B particles**, thanks to a new method based on **3 prongs** τ **decays**.
- The statistical precision on Run1 should be around 6.5%, the best achieved so far for a single measurement.
- The very successfull RunII data taking in 2015-2016 leads to a quadrupling of the data set
- High statistics and high purity samples to search for BSM effects in the event observables