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Rare decays of heavy-flavoured particles provide an ideal laboratory to look for deviations
from the Standard Model, and explore energy regimes beyond the LHC reach. Decays pro-
ceeding via electroweak penguin diagrams are excellent probes to search for New Physics, and
b— s{T¢™ processes are particularly interesting since they give access to many observables
such as branching fractions, asymmetries and angular observables. Recent results from the
LHCb experiment are reviewed.

1 Introduction

Flavour Changing Neutral Current (FCNC) processes, where a quark changes its flavour without
altering its electric charge, are forbidden at tree level in the Standard Model (SM) and can only
occur via loop diagrams. This makes such transitions rare and, due to the lack of a dominant
tree-level SM contribution, sensitive to new unobserved particles that can show up either as
a sizeable increase or decrease in the rate of particular decays, or as a change in the angular
distribution of the particles in the detector. A good laboratory to study FCNC are decays of
a b quark into an s quark and two leptons, b— s /¢~ which are described by the electroweak
diagrams shown in Fig. 1 (left).

The LHCb detector 12 is a single arm spectrometer fully instrumented in the forward region
and designed to study heavy-flavoured hadrons. During Run-1, LHCb collected about 1 and
2 fb™! of pp collisions at centre-of-mass energies of 7 and 8 TeV, respectively. Due to the
large production cross-section in the forward direction these data provide unprecedentedly large
numbers of B and /18 hadron decays. A flexible trigger system, excellent momentum and impact
parameter resolutions, and the most performant vertexing and particle identification capabilities
at the LHC, make LHCb the ideal place to look for New Physics (NP) through precise studies
of rare b-quark processes. Recent measurements of semileptonic b-hadron decays are discussed.

2 Branching fractions

The most basic observable that physics beyond the SM can affect is the rate at which a particular
decay occurs, which motivated the LHCb collaboration to perform the measurement of the
branching fraction of a series of FCNC processes. All measurements are performed as a function
of the dilepton invariant mass squared, ¢, and compared against the SM prediction. Final states
with muons are considered as being experimentally easier to reconstruct. The dependence of
the BY — K*Yu T~ differential branching fraction as a function of ¢? is shown in Fig. 1 (right).
Figure 2 shows the differential branching fraction of a collection of b— s ¢/~ decays of B and
Ag hadrons, as well as partner transitions such as b — d¢*¢~. In all cases, the experimental
uncertainty is dominated by the limited statistics of the samples available in the Run-1 data set.
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Figure 1: (left) Electroweak box and penguin diagrams describing the transition of a b quark
into an s quark and two leptons. (right) Sketch of the BY — K*Ou*u~ differential branching
fraction as a function of the dilepton invariant mass squared. Different Wilson coefficients can
be probed in different ¢? regions.

In the region below ~ 6 GeV?/c? in ¢2, the SM predictions consistently overshoot the data,
a common trend that is observed both in the mesonic and in the baryonic sectors. The largest
deviation is found in the decay BY — ¢utp~ in the region 1 < ¢ < 6 GeV?/c*, where the
data are 3.30 below the prediction 3. Decays of A(b) hadrons are also overestimated in the SM,
however predictions are currently much less precise than for B mesons . Finally, although the
BT — 7t u~ branching fraction is generally compatible with the prediction, agreement in
the lowest-¢? bin is only achieved when contributions from p and w resonances are taken into
account ®.

3 Angular analyses

Besides using branching fractions, much stronger constraints to possible extensions of the SM
can be set by studying the angular distribution of the final state particles of FCNC decays.
Depending on the decay mode and on the size of the available data sample, full or simplified
angular analyses have been performed.

The decay BY — K*°utp~ has a complex angular structure that can be fully described
by three angles and ¢?, and that provides many observables sensitive to different types of NP.
The LHCb collaboration has performed the first full angular analysis of this mode, and mea-
sured the full set of CP-averaged angular terms, their correlations, as well as the full set of
CP-asymmetries . The forward-backward asymmetry of the dimuon system, App, and the
longitudinal polarisation fraction of the K*°, Fy,, compared to the SM prediction are presented
in Fig. 3 (top). There is general consistency, but, similarly to the branching fraction, large
uncertainties due to the hadronic-matrix elements affect the predictions. However, it is possi-
ble to construct ratios of observables that are less dependent on the form-factors and that can
be theoretically determined with improved precision . Figure 3 (top right) shows one of such
observables, PZ, which manifests a local deviation from the SM in the region between 4 and
8 GeV?/ct in ¢? of about 30. An angular analysis of the decay B — K*%eTe™ in the ¢* range
between 0.002 and 1.120 GeV?/c* has also been performed by LHCb?, where all the measured
observables are found to be consistent with the predictions.

Although the decay BY — ¢utp~ has a reduced number of angular observables that can be
accessed compared to BY — K*%/T¢~ modes, a full angular analysis has also been performed 3.
Figure 3 (bottom left) shows Ff,, which is found to be in good agreement with the SM predic-
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Figure 2: Differential branching fraction of the decay (top) Bt — KTutpu=6, B — K*0utu=7,
BY— ¢ptpu~ 3 and (bottom) /12—) Aptp=*, BT — ntputp= 5, compared to SM predictions.

tion. Finally, because baryonic transitions allow to extract complementary information to that
available in decays of B mesons, LHCDb has performed the first angular analysis of /18 — Aptp 4,
Two forward-backward asymmetries, one in the hadronic and one in the leptonic system, have
been measured. While the former is in good agreement with the SM, the latter is consistently

above the prediction, as reported in Fig. 3 (bottom right).

4 Tests of lepton universality

Due to the equality of the electroweak couplings of gauge bosons to leptons, the decay rate of
processes whose final states only differ by the flavour of the participating leptons are expected
to be the same in the SM, except from very small Higgs penguin contributions and difference
in phase space due to the lepton masses. In particular, ratios of branching fractions represent
a powerful null test of the SM as theoretical uncertainties largely cancel in the predictions, and
experimental systematics are much reduced.

In the SM the ratio Rg = % is precisely predicted to be 14 O(1073) 19, The
LHCb collaboration has performed the most precise test of lepton universality using BT —
K*tutp~ and Bt — Ktete™ decays to date ''. The experimental result in the range 1 <
> <6 GeV?¥ctis Ry = 0.74570 099 (stat) +0.036 (syst), which manifests a tension with the SM
prediction at the level of 2.60, as shown in Fig. 4.

Several other tests of lepton universality are currently being carried out by the LHCb collab-
oration, most notably the measurement of the ratio of the branching fractions of B® — K*0putpu~
and BY — K*%¢te™, Ry+0. The experimental environment in which the detector operates leads
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Figure 3: Angular observables of the decay (top) B® — K*°u* ;=7 and (bottom) B? — ¢utpu=3,
Ag — Aptp~ 4, compared to SM predictions.

to significant differences in the treatment of decays involving muons or electrons in the final
state. Particularly, the much larger amount of bremsstrahlung emitted by the electrons and the
different trigger thresholds due to the higher occupancy of the calorimeters than of the muon
stations result in a difference in the reconstruction efficiency of about a factor five in favour
of the muonic mode. Figure 5 shows the distribution of the di-lepton invariant mass squared
as a function of the four-body invariant mass of the B° candidates for final states with muons
and electrons, where the second exhibit a more prominent radiative tail of the J/i» and (25)
resonances as well as a stronger contamination by partially-reconstructed backgrounds. The

0. *0 +,,—
efficiency corrections are controlled by measuring the ratio IZ((ZO:[I((*O%ﬁgI; +Z — )))), as well as de-

termining Ry« as a double ratio to the resonant modes B — K*0.J/) (— £¥¢7). A preliminary
result has been presented at a CERN-LHC Seminar 2.

Independent tests of lepton universality are also being carried out using b — cfv; decays
B(B=D*tr—7.) .
B(B—D*+u~v,)
measured to be Rp+ = 0.336 £ 0.027 (stat) & 0.030 (syst), which is 2.10 larger than the value
expected in the SM 3.

with tau leptons in the final state. The ratio of branching fractions Rp+ =

5 Summary and conclusions

Recent rare decays of B and Ag hadrons performed by the LHCb collaboration have been
presented. While most of the observables are in good agreement with the SM predictions,
some intriguing tensions have been observed, most notably in branching fractions of b— s £/~
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Figure 5: Di-lepton invariant mass squared, ¢2, as a function of the four-body invariant mass of
the B? candidates for B® — K*0¢*¢~ final states with (left) muons and (right) electrons.

processes in the low region of ¢2, in the P} angular observable in BY — K*°uTy~ and in the
Ry and Rp-+ ratios.

Several attempts to interpret these anomalies have been made by performing global fits
to various b — s observables from different experiments 141516 All these fits point to a ten-
sion between the data and the SM with a significance of around 3—4¢. Different models have
been proposed to account for such effects, for example containing a new heavy gauge boson
7! 1T18:19,20.21.22 ) leptoquarks 2324, but a definitive explanation has yet to be found.

The current status strongly motivates further work both in the theory and in the experimen-
tal side to clarify the present observations. With the upcoming Run-2 data LHCb will continue
to perform analyses of rare b-quark decays, including additional tests of lepton universality such
as Rg.
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