Search for Invisible Dark Photon Decays at BABAR + New CP Violation Results from Combined BABAR+Belle Measurements

Markus Röhrken California Institute of Technology

On behalf of the $B\!A\!B\!A\!R$ and Belle Collaborations

52nd Rencontres de Moriond - EW Interactions and Unified Theories 22nd of March 2017

- Dark matter is an important open problem of modern physics.
- Dark sector models provide dark matter candidate alternatives to WIMPs and can exhibit a complex structure beyond that of the Standard Model (SM).
- The dark photon A' is the boson associated with an additional U(1)' gauge symmetry in the dark sector, and it is possibly light (sub-GeV).

$$\gamma \swarrow A'$$

• There is a generic interaction of the form (kinetic mixing)

$$\Delta \mathcal{L} = \frac{\epsilon}{2} F^{Y,\mu\nu} F'_{\mu\nu}$$

between the SM hypercharge Y and the U(1)' fields with a mixing strength ϵ .

• The dark photon will decay invisibly, if lighter dark sector states (dark matter candidates) exist:

- At e⁺e⁻ colliders, one can search for e⁺e⁻ → γ A' with A' → invisible by tagging the recoil photon in "single photon" events.
- BABAR collected about 53 fb⁻¹ with dedicated single photon triggers during its last year of data taking, mostly at the Y(2S) and Y(3S) energies.

Analysis overview:

- Missing energy and momentum are the best signatures.
- Search strategy: Select single photon final states, then look for a bump in the missing mass M_X (or E_γ).
- Main background are e⁺e⁻ → γγ and e⁺e⁻ → γe⁺e⁻ with particles outside of the detector acceptance.

- The signal is extracted by simultaneous fits to the missing mass in independent regions of the data taken at the Y(2S) and Y(3S) energies.
- Examples of data distributions in the low-mass region:

03/22/2017

Markus Röhrken

Dark Photon at BaBar & Combined BaBar+Belle Analyses 4/13

- No significant signal is observed.
- Upper limits on the mixing parameter ε as a function of $m_{A'}$ are estimated.

Large improvement over previous measurements.

Measurement rules out the entire region preferred by the $(g-2)_{u}$ anomaly.

Further Highlights of Light Dark Matter Searches at BABAR

03/22/2017 Markus Röhrken Dark Photon at BaBar & Combined BaBar+Belle Analyses 6/13

- Combined BABAR+Belle analyses to make full use of the about 1.1 ab⁻¹ or ≈1240×10⁶ BB collected on the Y(4S).
- In a first *BABAR*+Belle analysis, we previously demonstrated the feasibility and the advantage of the joint approach [PRL 115, 121604 (2015)].

 The determination of the angle β of the Unitarity Triangle from sin(2β) [= sin(2φ₁)] measurements leads to a trigonometric ambiguity.

• $B^0 \rightarrow D^{(*)}h^0$ with $D \rightarrow K_S^0 \pi^+ \pi^-$ decays enable to extract both sin(2 β) and cos(2 β):

[A. Bondar, P. Krokovny, T. Gershon PLB 624 1 (2005)]

Current best single experimental uncertainty on cos(2β) is ≈±0.36 [PRD 94 (2016) 052004]

 \rightarrow Perform time-dependent Dalitz analysis combining *BABAR*+Belle data to improve the sensitivity on cos(2 β).

03/22/2017 Markus Röhrken Dark Photon at BaBar & Combined BaBar+Belle Analyses 8/13

• The $D \to K_S^0 \pi^+ \pi^-$ Dalitz model is directly obtained from flavor-tagged $e^+e^- \to c\bar{c}$ data.

- The Dalitz model accounts for 14 intermediate two-body resonances.
- The K-matrix and LASS parameterizations are used to model the ππ and Kπ S-waves.
- The $D \rightarrow K_S^0 \pi^+ \pi^-$ Dalitz model extracted from $e^+e^- \rightarrow c\bar{c}$ data is used to extract sin(2 β) and cos(2 β) from the B^0 decay combining *BABAR*+Belle data.

03/22/2017

Markus Röhrken

- Reconstruct $B^0 \to D^{(*)}h^0$ with h^0 in $\pi^0 \to \gamma\gamma$, $\eta \to \gamma\gamma$, $\pi^+\pi^-\pi^0$ and $\omega \to \pi^+\pi^-\pi^0$ $D \to K^0_S \pi^+\pi^-$ and $D^{*0} \to D\pi^0$.
- In total, 5 B^0 decay modes are reconstructed.
- $e^+e^- \rightarrow q\bar{q} \ (q \in \{u, d, s, c\})$ continuum background is identified by neural networks.
- Coherent analysis strategy, apply almost same selection on *BABAR* and Belle data.
- Extract signal by 3D fit of beam-constr. mass M'_{bc} , energy-difference ΔE and NN'_{out} .

03/22/2017

Markus Röhrken

Dark Photon at BaBar & Combined BaBar+Belle Analyses 10/13

• Perform measurement by maximizing the combined log-likelihood function:

$$\ln \mathcal{L} = \sum_{i} \ln \mathcal{P}_{i}^{BABAR} + \sum_{j} \ln \mathcal{P}_{j}^{Belle}$$

• Physics PDFs are convoluted with specific resolution functions:

$$\mathcal{P}^{\mathrm{Exp.}} = \sum_{k} f_{k} \int \left[P_{k} \left(\Delta t' \right) R_{k} \left(\Delta t - \Delta t' \right) \right] d \left(\Delta t' \right)$$

- Apply BABAR and Belle specific resolution models and flavor tagging algorithms.
- Apply common signal model:

$$\begin{aligned} \mathbf{P}_{\mathrm{sig}}(\Delta \mathbf{t}) \propto & \left[|\mathcal{A}_{\bar{D}^0}|^2 + |\mathcal{A}_{D^0}|^2 \right] \\ & \mp \left(|\mathcal{A}_{\bar{D}^0}|^2 - |\mathcal{A}_{D^0}|^2 \right) \cos(\Delta m \Delta t) \\ & \pm 2\eta_{h^0} \left(-1 \right)^L \left[\mathrm{Im} \left(\mathcal{A}_{D^0} \mathcal{A}_{\bar{D}^0}^* \right) \cos(2\beta) - \mathrm{Re} \left(\mathcal{A}_{D^0} \mathcal{A}_{\bar{D}^0}^* \right) \sin(2\beta) \right] \sin(\Delta m \Delta t) \end{aligned}$$

$$\begin{array}{l} BABAR + \mbox{Belle with 1.1 ab}^{-1} : & \mbox{Preliminary} \\ \sin(2\beta) = 0.80 \pm 0.14 \, ({\rm stat.}) \pm 0.06 \, ({\rm syst.}) \pm 0.03 \, ({\rm model}) \\ \cos(2\beta) = 0.91 \pm 0.22 \, ({\rm stat.}) \pm 0.09 \, ({\rm syst.}) \pm 0.07 \, ({\rm model}) \end{array} \right) \\ \beta = (22.5 \pm 4.4 \, ({\rm stat.}) \pm 1.2 \, ({\rm syst.}) \pm 0.6 \, ({\rm model}))^{\circ} \end{array}$$

03/22/2017 Markus Röhrken Dark Photon at BaBar & Combined BaBar+Belle Analyses 11/13

- First evidence for $\cos(2\beta) > 0$ (3.7 σ)
- Direct exclusion of the 2nd solution $\pi/2 \beta = (68.1 \pm 0.7)^\circ$

of the CKM Unitarity Triangle (7.3 σ)

- → Reduction of the trigonometric ambiguity of the CKM Unitarity Triangle
- Exclusion of $\beta = 0^{\circ}$ (5.1 σ)
 - \rightarrow Observation of CP violation in $B^0 \rightarrow D^{(*)} h^0$ decays new

03/22/2017

Markus Röhrken

Dark Photon at BaBar & Combined BaBar+Belle Analyses 12/13

Summary

- Light dark sectors have recently emerged as a new possibility for dark matter and provide a rich phenomology.
- *BABAR* pioneered the low-energy, high-intensity collider searches in various dark sector signatures and continues to put stringent limits on the allowed parameter space.
- The BABAR and Belle experiments recently started performing measurements combining the about 1.1 ab⁻¹ collected on the Y(4S), which enables for an unprecedented sensitivity in time-dependent CP violation measurements.
- The most precise measurement of cos(2 β), the exclusion of multifold solutions on the Unitarity Triangle and an observation of CP violation in $B^0 \rightarrow D^{(*)}h^0$ decays have been reported.