

$\overline{B} \rightarrow D^{(*)} \tau^- \overline{v}_{\tau}$ and Related Tauonic Topics at Belle

Rencontres de Moriond EW 2017

March 23, 2017

Shigeki Hirose

(Nagoya University)

On behalf of the Belle Collaboration

 $\blacksquare \ \overline{B} \to D^{(*)}\tau^-\overline{\nu}_{\tau}$

- 3.9σ discrepancy from the SM has been observed as of 2015
 - Average of the measurements at Belle, BaBar and LHCb
- Two new results from Belle in 2016 Rencontres de Moriond EW 2017

Belle Experiment

- KEKB: e^+e^- collider at $\sqrt{s} = 10.58$ GeV, at KEK in Japan – Produce *B* mesons via $\Upsilon(4S) \rightarrow B\overline{B}$
- World record luminosity; Data contains 7.72 × 10⁸ $B\overline{B}$ Identification for μ^{\pm} γ detection

Tagging Method

 Tag a counterpart *B* meson (*B*_{tag}) using <u>hadronic</u> or <u>semileptonic</u> decays

 \rightarrow Obtain information of B_{sig} indirectly

- Three results with full data sample
 - Hadronic tag + $\tau^- \rightarrow l^- \bar{\nu}_l \nu_\tau$ for R(D) and $R(D^*)$
 - Semileptonic tag + $\tau^- \rightarrow l^- \bar{\nu}_l \nu_\tau$ for $R(D^*)$
 - Hadronic tag + $\tau^- \rightarrow h^- \nu_{\tau}$ for $R(D^*)$ and τ polarization.

Belle Collaboration, Phys. Rev. D 92, 072014 (2015)

- Today's topic

Belle Collaboration, Phys. Rev. D 94, 072007 (2016)

$R(D^*)$ with Semileptonic Tagging

- Independent analysis of the previous $R(D^{(*)})$ measurement
- More background due to a v in $\overline{B}_{tag} \to D^{(*)}l^-\overline{v}_l$ \to Focus on $\overline{B}^0 \to D^{*+}\tau^-\overline{v}_{\tau}$
- Signal/normalization separation based on smaller $\cos\theta_{B-D^*l}$

Belle Collaboration, Phys. Rev. D 94, 072007 (2016)

Signal Extraction

First measurement of $\overline{B} \rightarrow D^* \tau^- \overline{\nu}_{\tau}$ using the semileptonic tagging

Compatibility with the SM is 1.60 Rencontres de Moriond EW 2017

Belle Collaboration, arXiv:1612.00529 (submitted to Phys. Rev. Lett.)

 $R(D^*)$ and $P_{\tau}(D^*)$ with Hadronic τ Decays

7/15

- au polarization is a variable sensitive to NP
 - It can be measured using two-body decays of τ

Target of this analysis

- First measurement of $P_{\tau}(D^*)$ using $\tau^- \rightarrow \pi^- \nu_{\tau}$, $\rho^- \nu_{\tau}$
- New measurement of $R(D^*)$
 - Independent study of previous measurements using $\tau^- \rightarrow l^- \bar{\nu}_l \nu_\tau$
 - \rightarrow Different final state = different background

Belle Collaboration, arXiv:1612.00529 (submitted to Phys. Rev. Lett.)

• $P_{\tau}(D^*)$ Measurement Method

Solving the equation, $\cos\theta_{\text{hel}}$ is obtained!

Rencontres de Moriond EW 2017

- Signal significance of about 7σ
 - First observation of the $\bar{B} \rightarrow D^* \tau^- \bar{\nu}_{\tau}$ signal using only hadronic τ decays

$$R(D^*) = 0.270 \pm 0.035(\text{stat.}) \stackrel{+0.028}{_{-0.025}}(\text{syst.})$$
$$P_{\tau}(D^*) = -0.38 \pm 0.51(\text{stat.}) \stackrel{+0.21}{_{-0.16}}(\text{syst.})$$

Compatibility with the SM within 0.4σ

Rencontres de Moriond EW 2017

Belle Collaboration, arXiv:1612.00529 (submitted to Phys. Rev. Lett.)

Result (2)

- Result is consistent with the SM within 0.4σ
- Excludes $P_{\tau}(D^*) > +0.5$ at 90% C.L. \rightarrow First result of $P_{\tau}(D^*)$
- First $R(D^*)$ measurement only with hadronic τ decays
 - Precision of 16%; comparable to the previous measurements (9-14%)

• $R(D^{(*)})$ by HFAG

- $\sim 4\sigma$ discrepancy from the SM remains
 - All the experiments show the larger $R(D^{(*)})$ than the SM
- More precise measurements at Belle II and LHCb are essential

 $\blacksquare B^- \to \tau^- \nu_{\tau}$

Charged Higgs in Type-II 2HDM (1)

- Charged Higgs appears in the Two Higgs Doublet Model
 - Large coupling to the τ lepton
- Contribution from Type-II 2HDM

Ratio of VEV in two Higgs doublets

13/15

$$\mathcal{L}_{\text{eff}} = -2\sqrt{2}G_F V_{ib} \left[O_{\text{SM}} - m_b m_\tau \frac{\tan^2 \beta}{m_{H^{\pm}}^2} O_S \right] \left\{ \begin{array}{l} i = c \text{ for } \overline{B} \to D^{(*)} \tau^- \overline{\nu}_\tau \\ i = u \text{ for } B^- \to \tau^- \overline{\nu}_\tau \end{array} \right.$$

<u>M. Tanaka and R. Watanabe, Phys. Rev. D 87, 034028 (2013)</u> W.-S. Hou, Phys. Rev. D 48, 2342 (1993)

Both modes have negative interference of charged Higgs with the SM

Charged Higgs in Type-II 2HDM (2)

- All the results are consistent with, but always larger than the SM
- Large value of $tan\beta/m_{H^{\pm}}$ seems disfavored

Summary

- $\overline{B} \to D^{(*)}\tau^- \overline{\nu}_{\tau}$ and $B^- \to \tau^- \overline{\nu}_{\tau}$ are interesting modes in terms of sensitivity to NP such as charged Higgs
- Belle released two new measurements for $\overline{B} \to D^* \tau^- \overline{\nu}_{\tau}$ in 2016
 - First application of semileptonic tagging to the $R(D^*)$ measurement
 - First measurement of $P_{\tau}(D^*)$ by hadronic tag + $\tau^- \rightarrow \pi^- \nu_{\tau}$, $\rho^- \nu_{\tau}$
- The results for (semi-)tauonic decays at Belle are close to the SM
 - However, world-average $R(D^{(*)})$ including results from BaBar and LHCb shows ~4 σ deviation from the SM

Important to improve precision at Belle II