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τ ∼ 4 µs

Metastable antiprotonic helium (p̄He+) 

Electron in 1s orbital. Attached 
with 25-eV ionization potential. 
Auger emission suppressed.

Antiproton in a ‘circular’ Rydberg orbital  
n=38, l=n-1 with diameter of  100 pm.  

Localized away from the nucleus. 
The electron protects the antiproton 
during collisions with helium atoms.
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Precision measurements of  p̄He+ transition frequencies and 
companions with QED calculations yields:

Antiproton-to-electron mass ratio to precision of  8 × 10-10

Assuming CPT invariance, electron mass to 8 × 10-10

 Combined with the cyclotron frequency of  antiprotons 

in a Penning trap by TRAP and BASE collaborations, 

antiproton and proton masses and charges  to 5 × 10-10 

         → Consistency test of  CPT invariance

Bounds on the 5th force at the sub-A length scale……
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Non-relativistic energy                           1 522 150 208.13 MHz 

mα4 order corrections                                       -50320.64 

mα5 order corrections                                          7070.28 

mα6 order corrections                                            113.11 

mα7 order corrections                                       -10.46(20) 

mα8 order corrections                                         -0.12(12) 

Transition frequency                            1 522 107 060.3(2) 

Uncertainty from alpha charge radius                +/-0.007 

Uncertainty from antiproton charge radius       <  0.0007

Korobov, Hilico, Karr, PRL 112, 103003 (2014). 

Korobov, Hilico, Karr, PRA 89, 032511 (2014). 

Korobov, Hilico, Karr, PRA 87, 062506 (2013). 

Calculated two-photon transition frequency 
(n,l)=(36,34)→(34,32) 
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One-loop self-energy correction in atomic units 
for two-center system 

V.I. Korobov, J.-P. Karr, L. Hilico
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Two-loop QED contributions

V.I. Korobov
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Antiprotonic He (n,l)=(33,32)→(31,30)

Theoretical precision compared to other atoms

2 145 054 858.100(200)  MHz

Uncertainty due to mα7 QED 
on this digit

Uncertainty due to helium 
charge radius 

(to be improved by muHe 
experiment)

Experimental precision

Hydrogen 1s-2s
2 466 061 413.18    MHz

(Korobov 2014)

Uncertainty due to proton charge radius on these digits

(Parthey et al. 2014)
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Laser spectroscopy method
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Sub-Doppler two-photon spectroscopy
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virtual state

(n-1, ℓ-1)

(n-2, ℓ-2)

(n, ℓ) 

Δνd
ν2 laser

ν1 laser

Laser

We reduced broadening using two-

photon excitation of antiproton with 

counter-propagating laser beams of 

unequal wavelength.

By tuning virtual intermediate state of 

antiproton within 10 GHz of a real state, 

transition probability enhanced by 

>1000x.



CERN Antiproton Decelerator 

A beam of 3 million  
antiprotons of kinetic energy 

5.3 MeV are provided  
every minute to ATRAP,  

ALPHA, AEGIS, ASACUSA,  
BASE, (GBAR) 

 

Figure 3: Ad possible modifications 
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Experimental setup
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Two-photon spectroscopy results
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Reduction of  Doppler width by buffer gas cooling
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Cooled 2×109 p̄He+ atoms to ~1.5 K 

Experiment took over 4 years of  data. 

Resolved hyperfine structure in single-photon resonance
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Experiment-theory 2-photon comparison
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35

Theory                             1 522 107 060.3(2)          MHz 

Experiment                      1 522 107 062(4)(3)(2)    MHz

Nature 475 484 (2011)
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Comparison between experimental and theoretical 
transition frequencies of  13 single-photon resonances
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Antiproton-to-electron mass ratio 2016
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 Antiproton-to-electron mass ratio 1836.1526734 (15)

Science 354, 610 (2016)
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LEAR experiments

AD construction

RFQD beam

Frequency comb, 

  laser chirp correction

Two-photon 

spectroscopy

Relativistic
corrections

Complex-coordinate rotation
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BASE and ATRAP recent results

!"# = 2.792	846	5	(23) BASE  collab. Nat. Comm. 8, 14084 (2017) 

Nature 524, 196 (2015)

B

r

Larmor frequency measured by continuous Stern Gerlach effect

ATRAP collab. PRL 110, 130801 (2013)
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ALPHA 1s-2s laser spectroscopy @ 243 nm

ATRAP, AEGIS, ASACUSA-CUSP, GBAR also show lots of  progress!

Nature 541, 506 (2016)



New experiment on pionic helium＠PSI 
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First laser spectroscopy of  an   

atom containing a meson

Negative pion in a ‘circular’ Rydberg orbital  
n=16, l=n-1 with diameter of  100 pm.  

Localized away from the nucleus. 
The electron protects the antiproton during 
collisions with ordinary helium atoms.

τ ∼ 7 ns !
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Summary
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Sub-Doppler two-photon laser spectroscopy of  antiprotonic helium 
atoms. Measured 3 two-photon transitions to a precision of  2.3 ppb. 

Collisional buffer gas cooling of  antiprotonic helium atoms to T=1.5 K. 
Measured 13 single-photon transitions. 

Agreed with 3-body QED calculations. Determined the antiproton-to-

electron mass ratio as 1836.1526734 (15). 

Laser spectroscopy of  metastable pionic helium, experimental runs 
2014-2015, observation of  first laser induced pion transition……….. 
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