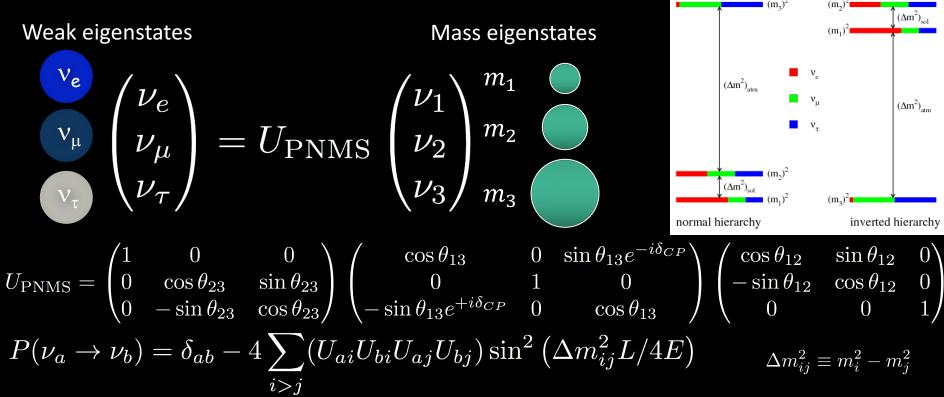

New results on CP from T2K

T. Nakadaira (KEK IPNS/J-PARC) for the T2K collaboration

52nd Rencontres de Moriond ELECTROWEAK INTERACTIONS AND UNIFIED THEORIES Mar. 18th - 25th, 2017

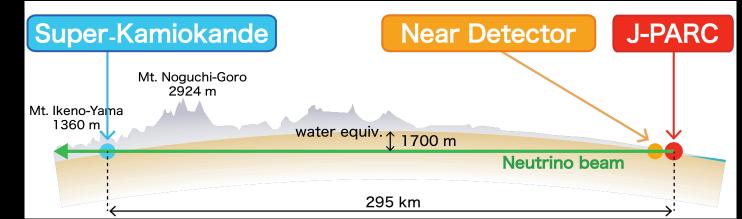

The T2K Collaboration

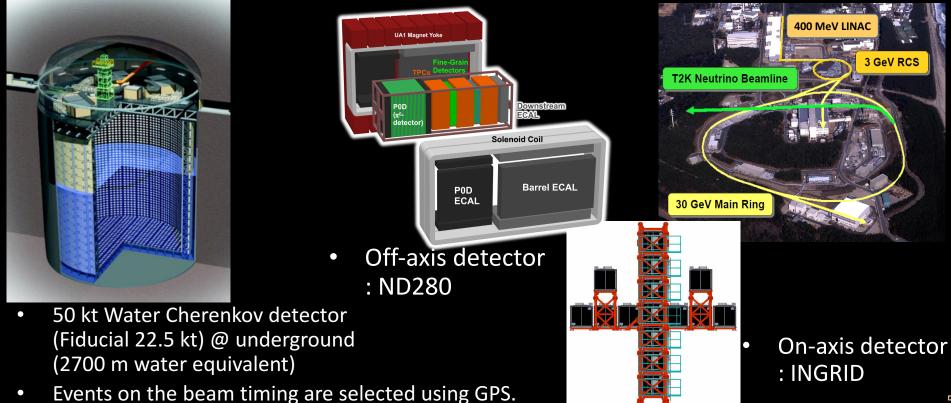
1

C

	Italy ~500 me	mbers, 63 Institutes,	11 countries	
Canada	INFN, U. Bari	Poland	Switzerland	USA
TRIUMF	INFN, U. Napoli		U. Bern	Boston U.
U. B. Columbia	INFN, U. Padova	NCBJ, Warsaw	U. Geneva	Colorado S. U.
U. Regina	INFN, U. Roma	U. Silesia, Katowice		Duke U.
U. Toronto	Japan	U. Warsaw	United Kingdom	Louisiana State U.
U. Victoria	ICRR Kamioka	Warsaw U. T.	Imperial C. London	Michigan S.U.
U. Winnipeg	ICRR RCCN	Wroclaw U.	Lancaster U.	Stony Brook U.
York U.	Kavli IPMU		Oxford U.	U. C. Irvine
	KEK		Queen Mary U. L.	U. Colorado
France	Kobe U.	Russia	Royal Holloway U.L.	U. Pittsburgh
CEA Saclay	Kyoto U.	INR	STFC/Daresbury	U. Rochester
IPN Lyon	Miyagi U. Edu.		STFC/RAL	U. Washington
LLR E. Poly.	Okayama U.	Spain	U. Liverpool	
LPNHE Paris	Osaka City U.	IFAE, Barcelona	U. Sheffield	
	Tokyo Institute of Tech	IFIC, Valencia	U. Warwick	\sim
Germany	Tokyo Metropolitan U.	U. Autonoma Madrid		
Aachen	U. Tokyo			
	Tokyo U. of Science			
	Yokohama National U.			

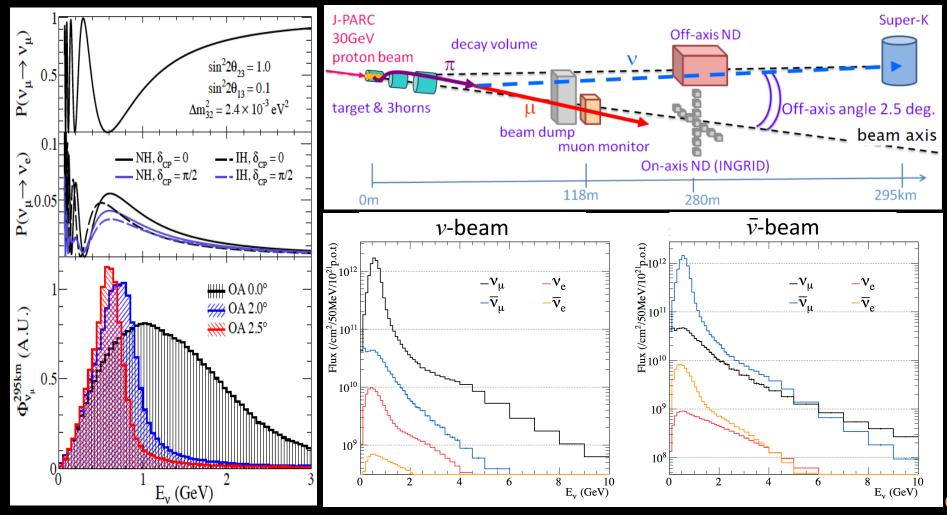
3-flavor neutrino oscillation

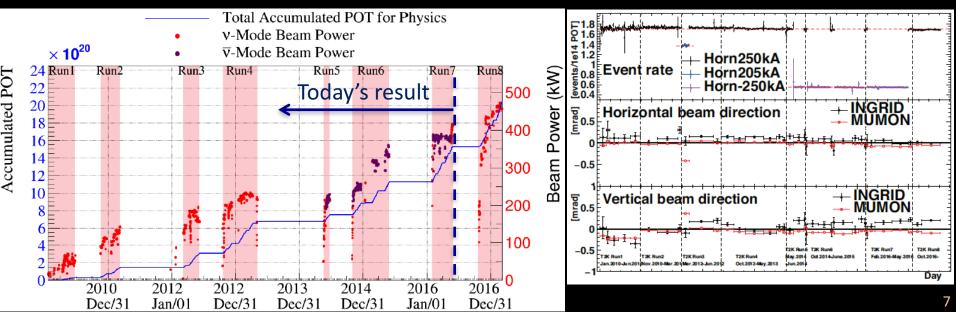

- 6 independent parameters in 3 mixing angles, 1 complex phases, 3 mass-squared differences.
 - Mass hierarchy (sign of Δm^2_{32}) and δ_{CP} are not determined yet. \leftarrow Accelerator-based Long baseline v oscillation experiment can address.


Goal of T2K experiment

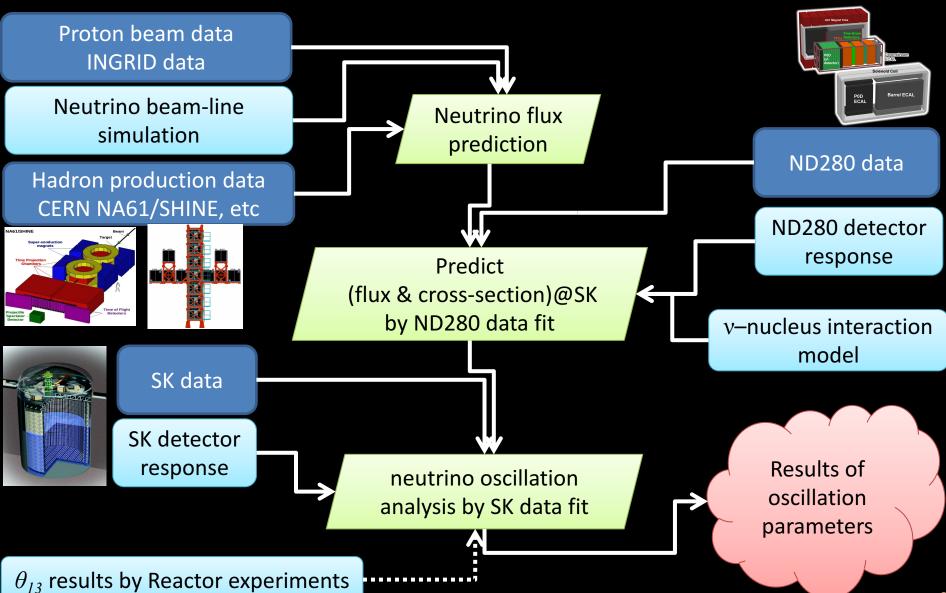
- Direct search for $v_{\mu} \rightarrow v_{e}$ oscillation: Discovered in 2013!
- Precise measurement θ_{23} of $v_{\mu} \rightarrow v_{\mu}$ disappearance
- Search for CP violation phenomena in the lepton sector
 - Difference between $v_{\mu} \rightarrow v_{e}$ and $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{\mu}) &\simeq 1 - \left(\cos^{4}\theta_{13} \cdot \sin^{2}2\theta_{23} + \sin^{2}2\theta_{13} \cdot \sin^{2}\theta_{23}\right) \cdot \sin^{2}\left(\frac{\Delta m_{31}^{2} \cdot L}{4E_{\nu}}\right) \\ P(\nu_{\mu} \rightarrow \nu_{e}) &\simeq \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \sin^{2}\left(\frac{\Delta m_{32}^{2}L}{4E_{\nu}}\right) \left(1 + \frac{2a}{\Delta m_{31}^{2}} \left(1 - 2\sin^{2}\theta_{13}\right)\right) \\ &- \sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13} \sin \delta_{CP} \sin^{2}\left(\frac{\Delta m_{32}^{2}L}{4E_{\nu}}\right) \sin\left(\frac{\Delta m_{21}^{2}L}{4E_{\nu}}\right) + \cdots \\ P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) &\simeq \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \sin^{2}\left(\frac{\Delta m_{32}^{2}L}{4E_{\nu}}\right) \left(1 - \frac{2a}{\Delta m_{31}^{2}} \left(1 - 2\sin^{2}\theta_{13}\right)\right) \\ &+ \sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13} \sin \delta_{CP} \sin^{2}\left(\frac{\Delta m_{32}^{2}L}{4E_{\nu}}\right) \sin\left(\frac{\Delta m_{21}^{2}L}{4E_{\nu}}\right) + \cdots \end{split}$$


T2K experiment

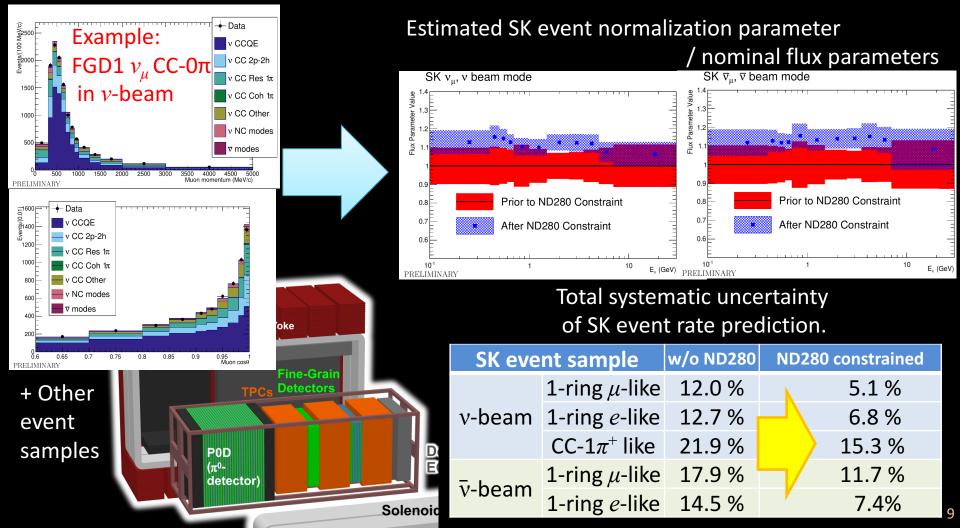

J-PARC neutrino beam

- Narrow band beam by off-axis method.
- *v*-beam and \bar{v} -beam can be switched by changing the field polarity of horns.
- Neutrino flux is estimated from beam MC using the hadron production of 30 GeV p-C measured by CERN NA61/SHINE experiment, etc.

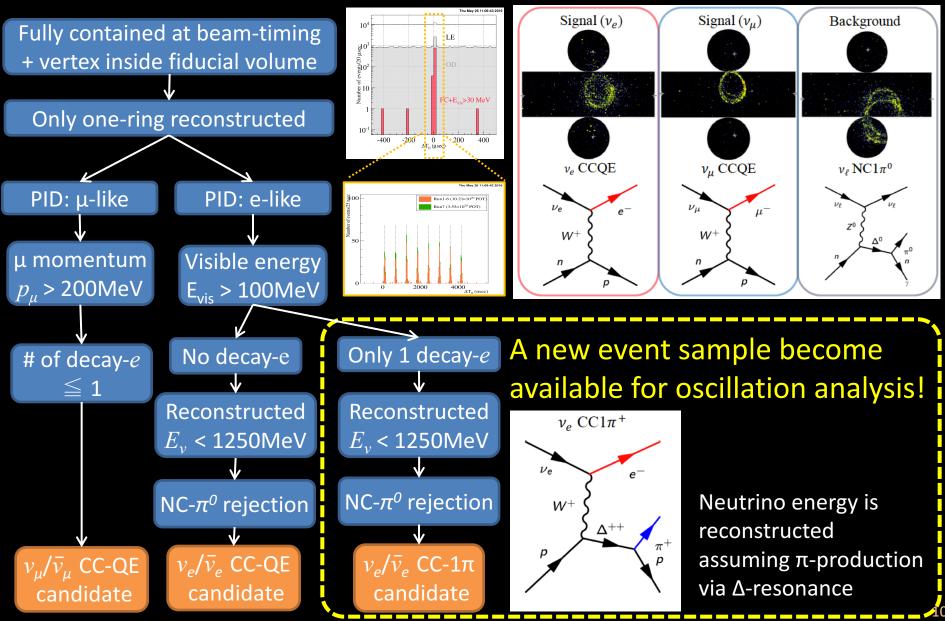


T2K data-taking status

- T2K has been taking physics data from Jan. 2010.
- From 2014, \overline{v} -beam data are also produced.
- Beam quality is stable for entire run period.
- Today's result is based on data up to May, 2016.
 - v-beam data: 7.482×10²⁰ POT (Protons-On-Target) \overline{v} -beam data: 7.471×10²⁰ POT
- As of Mar 8th, beam power for physics run is ~470kW. Accumulated POT for T2K exceeds 2×10²¹ POT.

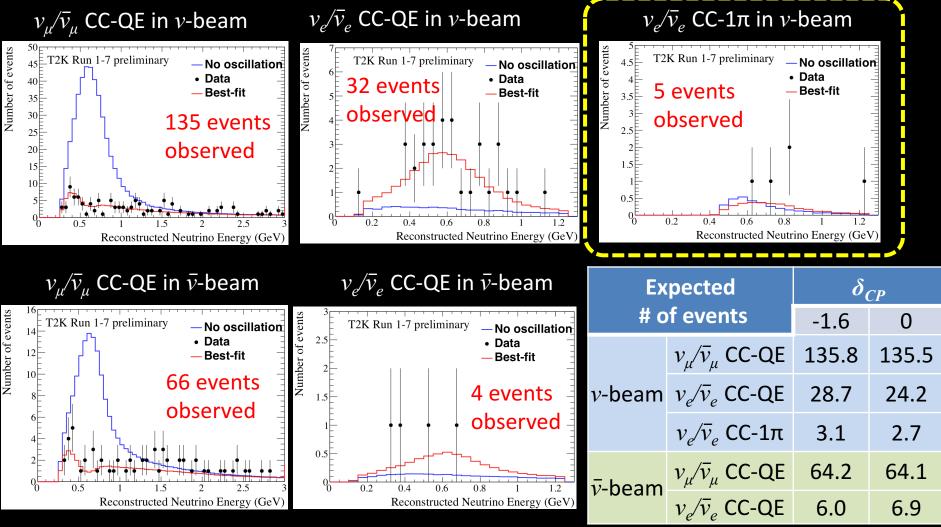


T2K oscillation analysis strategy

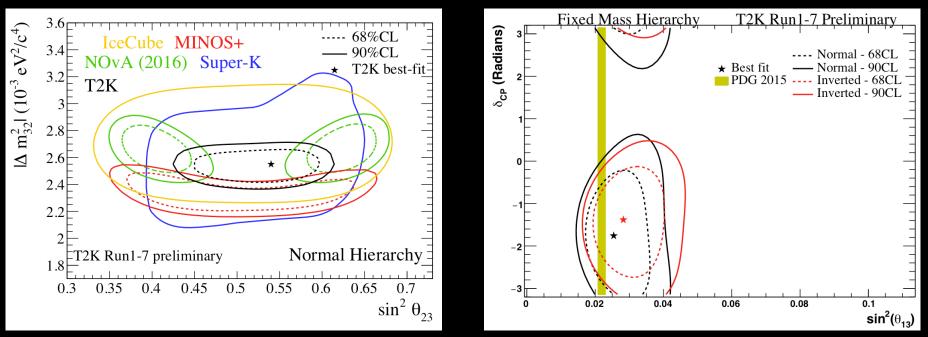


Near detector data fit

• Charged-current v_{μ} / \bar{v}_{μ} interaction event sub-samples in FGD1(CH target) and FGD2(CH+H₂0 target) that are categorized by final-state and beam-mode (v/ \bar{v}) are fitted simultaneously.

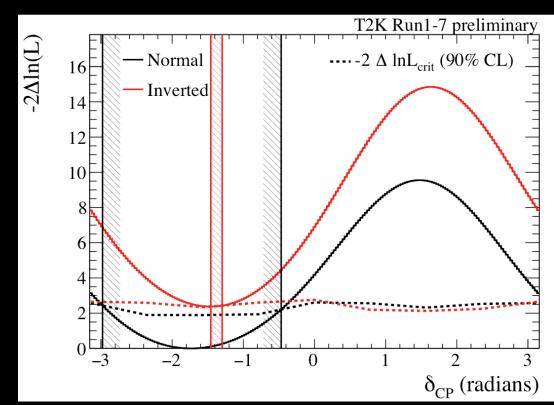


Far detector (SK) event selection


Observed SK neutrino event candidates

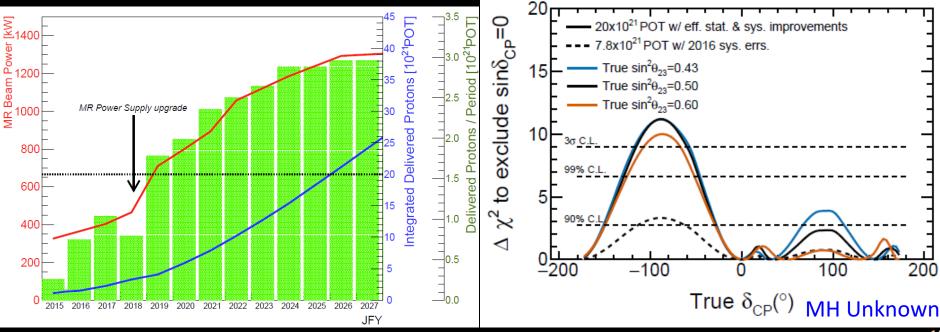
 Oscillation parameter is determined by fitting 5 event categories simultaneously.

Results on oscillation parameters

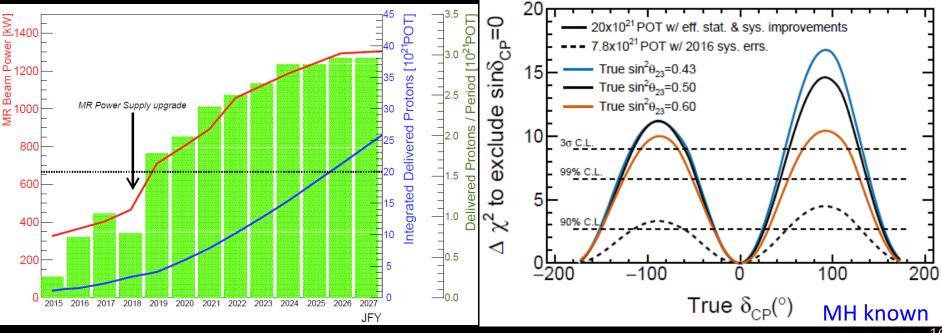

• T2K results consistent with the max. oscillation ($\sin^2\theta_{23}=0.5$).

Super-K: PoS ICRC2015 (2015) 1062 Minos+: Neutrino 2014 NOvA : ICHEP2016 IceCube DeepCore: Phys.Rev. D91 (2015) 072004

Obtained results on CP


- Constrain θ_{I3} with the results by reactor exp.
- *CP*-conservation hypothesis (sin δ_{CP} =0) is excluded with 90% CL.
- Confidence interval (90 %CL): NH -2.978 ~ -0.467 [rad] IH -1.466 ~ -1.272 [rad]

Future prospects


T2K-II (Running time extension)

- T2K proposes to collect 20×10^{21} POT data to search for evidence of CP violation in the lepton sector with 3σ sensitivity. (arXiv:1609.04111 [hep-ex])
 - J-PARC PAC recognizes the scientific merit and gave stage-1 status in 2016.

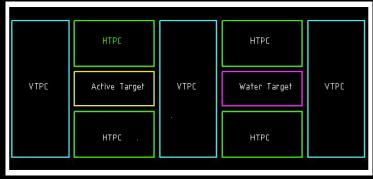
T2K-II (Running time extension)

- T2K proposes to collect 20×10^{21} POT data to search for evidence of CP violation in the lepton sector with 3σ sensitivity. (arXiv:1609.04111 [hep-ex])
 - J-PARC PAC recognizes the scientific merit and gave stage-1 status in 2016.

Upgrade: T2K \rightarrow T2K-II

- Beam Improvement:
 - 750 kW → 1.3 MW by HW upgrade of J-PARC MR accelerator and v-beamline
 - Improve *v*-flux/POT by horn current 250 kA→320 kA
- Far detector (SK) analysis improvement:
 - Enlarge fiducial volume, etc
- \rightarrow Aiming × 1.5 signal/POT
- 356.3 $v_{\mu} \rightarrow v_e$ sig. expected in v-beam
- 73.6 $\bar{v}_{\mu} \rightarrow \bar{v}_{e}$ signal expected in \bar{v} -beam (v-beam: \bar{v} -beam=50:50, NH, δ_{CP} =0 is assumed)

New collaborators are very welcome!


- Near detector upgrade
 - Covering more phase space, etc
 - LOI was submitted to CERN SPSC.

UA1 Magnet Yoke

Inlanaid Cai

P0D ECAL Barrel ECAL

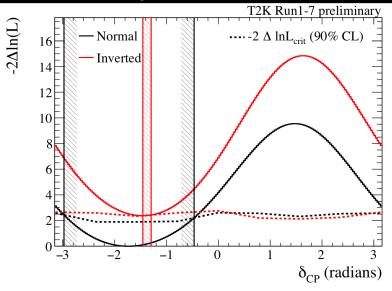
\rightarrow Aiming to improve syst. error: ~6% \rightarrow ~4%

Summary

- Latest T2K results on neutrino oscillation by adding new event sample (v_e CC1 π) is reported.
 - CP conservation hypothesis (sin δ_{CP} = 0) is disfavored with 90% CL.
 - Neutrino oscillation via mixing angle θ_{23} is consistent with Max. oscillation (sin² θ_{23} =0.5).
- T2K propose to collect 2×10^{22} POT with aim to search for CPV with 3σ sensitivity.
 - Scientific merit is recognized by J-PARC PAC (stage-1 status)
 - Near detector upgrade has been started.
 - Effort to beam-power improvement is also on-going.
 New collaborators are very welcome!

Backup

Systematic uncertainty of expected # events at SK

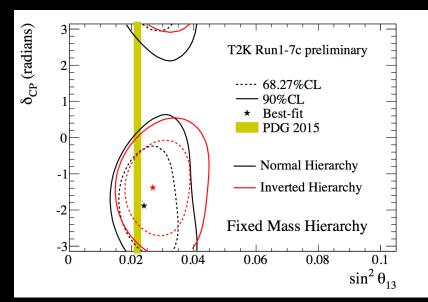

Source of Uncertainties		SK event sample: ΔN _{sk} /N _{sk} (1σ error)					
		v-beam			\bar{v} -beam		
		1-ring μ -like	1-ring <i>e</i> -like	$ ext{CC-1}\pi^+$ e-like	1-ring μ -like	1-ring <i>e</i> -like	
SK: D	Detecto	r + Final State Int. + 2ndary int.	4.2% 3.5% 14.0% 11.1%		4.0%		
ors		Neutrino Beam flux	3.6%	3.7%	3.6%	3.8%	3.8%
Near detectors		MEC (corr)	3.5%	3.9%	0.5%	3.0%	3.0%
det	v-interaction cross-section	MEC bar (corr)	0.2%	0.1%	0.0%	1.8%	2.3%
ear		NC 1γ (uncorr)	0.0%	1.5%	0.4%	0.0%	3.0%
Ž +	v-int∈ cross·	$\sigma(v_e) / \sigma(v_\mu)$	0.0%	2.6%	2.4%	0.0%	1.5%
Beam +	-> D	(Cross-section: sub total)	4.0%	5.1%	4.8%	4.2%	5.5%
Be	(F	-lux + Cross-section Sub total)	2.9%	4.2%	5.0%	3.5%	4.7%
Oscillation parameters: $sin^2\theta_{13}$, $sin^2\theta_{12}$, Δm^2_{21}		0.0%	4.2%	3.8%	0.0%	4.0%	
Total		5.1%	6.8%	15.3%	11.7%	7.4%	

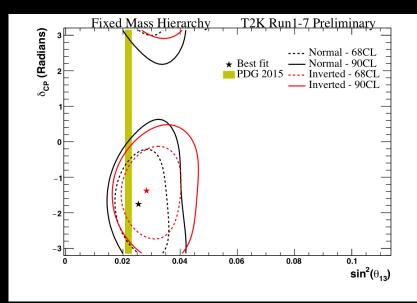
Previous results, arXiv:1701.00432 (Accepted by PRL)

90%CL Confidence intervals NH: -3.13 ~ -0.39 IH: -2.09 ~ -0.74

With SK v_e CC-1 π e sample

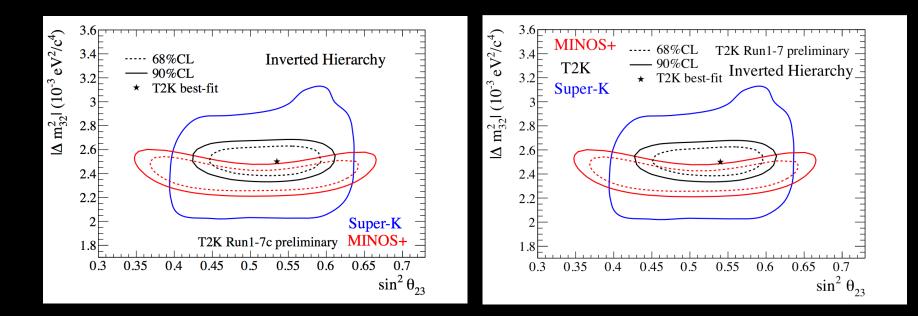
90%CL Confidence intervals NH: -2.98 ~ -0.47 IH: -1.47 ~ -1.27

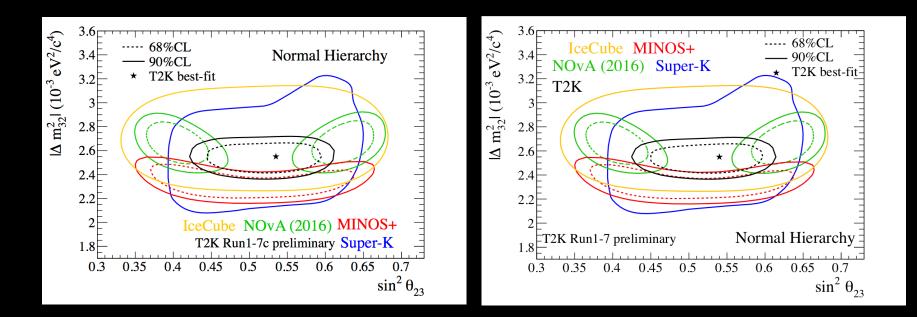

Bayesian analysis : Posterior probability for different mass hierarchies and octants.


	$\sin^2 heta_{23} < 0.5$	$\sin^2 heta_{23} > 0.5$	Sum
IH $(\Delta m^2_{32} < 0)$	0.116	0.254	0.370
$\mathrm{NH}~(\Delta m^2_{32}>0)$	0.210	0.420	0.630
Sum	0.326	0.674	1

	$\sin^2\theta_{23} < 0.5$	$\sin^2\theta_{23} > 0.5$	Line Total
Inverted Hierarchy	0.055	0.150	0.205
Normal Hierarchy	0.232	0.563	0.795
Column Total	0.287	0.713	1

Previous results, arXiv:1701.00432 (Accepted by PRL)


With SK v_e CC-1 π e sample


Previous results, arXiv:1701.00432 (Accepted by PRL)

With SK v_e CC-1 π e sample

Previous results, arXiv:1701.00432 (Accepted by PRL)

With SK v_e CC-1 π e sample

Near detector upgrade project

- CERN-SPSC-2017-002 ; SPSC-EOI-015 "Near Detectors based on gas TPCs for neutrino long baseline experiments"
 - T2K plans to establish the detector design and prepare the Technical Design Report (TDR) by the end of 2017.

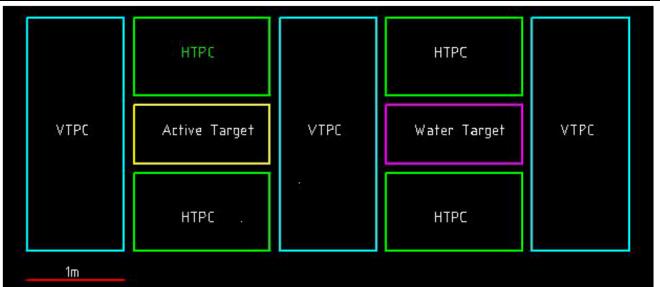


Figure 3. Schematic cross-section view of the proposed upgraded T2K ND280 detector. The new detectors are two scintillator trackers (labelled "Active Target" and "Water Target") and the four new TPCs (labelled "HTPC). The three VTPC are the existing T2K TPCs.