Cornering natural SUSY with $\sqrt{s} = 13$ TeV data

Les Rencontres de Moriond
EW Interactions and Unified Theories
La Thuile, Italy 18-25 March 2017

Andreas Petridis
On behalf of the ATLAS and CMS collaborations

University of Adelaide

March 20, 2017
Supersymmetry and Naturalness

The most studied extension of the SM among any BSM theory. Advantages:

- Could solve the hierarchy problem through the one loop stop correction;
- Could unify the fundamental interactions of nature;
- Could provide a dark matter candidate, if R-Parity is conserved;

- Naturalness requirement by the tree-level relation in MSSM:
 \[
 \frac{-m_Z^2}{2} = |\mu|^2 + m_{H_u}^2
 \]

- stops expected to be light (\(<\sim 1 \text{ TeV})
- higgsinos with masses below 350 GeV;
- a not too heavy gluino;

Overview

Analyses covered

- $\tilde{t}\tilde{t}$
- $\tilde{b}\tilde{b}$
- $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$

Compressed spectra

$(\Delta m = m_{\tilde{\chi}_1^\pm}/m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0} < 30 \text{ GeV})$

ATLAS

- \tilde{t} 0-lepton ([ATLAS-CONF-2017-020])
- $\tilde{t}_2 \rightarrow \tilde{t}_1 \ Z/H$ ([ATLAS-CONF-2017-013])
- \tilde{t} 1-lepton R-Parity Violation ([ATLAS-CONF-2017-013])

CMS

- \tilde{t} 0-lepton ([SUS-16-049])
- \tilde{t} 2-leptons ([SUS-17-001])
- 2-soft-leptons ([SUS-16-042])
- $HH \rightarrow 4b$ ([SUS-16-044])
- \tilde{b} 0-lepton ([SUS-16-032])
- $\tilde{b} \ h \rightarrow \gamma\gamma$ ([SUS-16-045])

Link to ATLAS public results

Link to CMS public results

A. Petridis
... from stops ...

... to sbottoms ...
The stop searches: $\tilde{t}_1 \rightarrow t\tilde{\chi}_1^0$

- **High mass region**
 \(\Delta m > m_t \)
 - boosted topologies

- **Intermediate region**
 \(\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) < m_t \)
 - Examine “3-body-decays”

- **Compressed region**
 \(\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) < m_W + m_b \)
 - Examine “4-body-decays”
 - Challenging region due to the soft products of the decays
 - high background rates
 - $\tilde{t}_1 \rightarrow c\tilde{\chi}_1^0$ challenging due to charm tagging

- Dedicated searches based on the *lepton multiplicities*
High mass - $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) > m_t$

- 2 inclusive SRs targeting different
 $\Delta m = m_{\tilde{t}} - m_{\tilde{\chi}_1^0}$ with 3 subcategories based on t–tagged and W–tagged jets (TT, TW, T0)

- Discriminant variables:
 $\vec{m}_{\text{jet}, R=1.2}$, $m_T^b, m_T^{b,\text{min}}, m_T^{b,\text{max}}, E_T^{\text{miss}}$

- Main background contribution comes $Z(\nu\nu) + \text{jets}$, followed by $t\tilde{t}V$ (where $V = W, Z$) and $t\tilde{t}$

$\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim m_t$

- Based on Recursive Jigsaw Reconstruction (RJR) by requiring an Initial State Radiation jet

- SRs binned in RISR ($\equiv E_T^{\text{miss}} / p_T^{\text{ISR}} \sim m_{\tilde{\chi}_1^0}/m_{\tilde{t}}$)

- Main background contribution $t\tilde{t}$
ATLAS Stop 0L - Results ATLAS-CONF-2017-020

- Top left: Data and Standard Model (SM) predictions in Signal Regions (SRs)
- 95% CL limits in the mass planes $m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0}$ for $\tilde{t}_1 \rightarrow t\tilde{\chi}_1^0$ (top right) and $m_{\tilde{g}} - m_{\tilde{t}_1}$ (bottom right) in fully hadronic final states.
CMS Stop 0-lepton CMS-SUS-16-049

High $\Delta m(\tilde{t}_1, \tilde{\chi}^0_1)$

- Search regions are defined from different requirements on $m_T(b_1, b_2, E_T^{\text{miss}})$, t/W–tagged jets, N_{jets}, “resolved-top”, E_T^{miss}

- 51 disjoint search regions

Low $\Delta m(\tilde{t}_1, \tilde{\chi}^0_1)$

- ISR approach

- 53 disjoint regions

- Development of a novel soft b–tagging algorithm based on the presence of a secondary vertex for recovering b–tagged below $p_T(b) < 20$ GeV
95% CL exclusion limits on $pp \to \tilde{t}_1 \tilde{t}_1$ in three different topologies;

- High mass region: $m_{\tilde{t}_1}$ up to 1.04 TeV and $m_{\tilde{\chi}_1^0}$ up to 500 GeV are probed;

- Low mass region ($\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) < m_W$): $m_{\tilde{t}_1}$ up to 580 GeV are probed for $m_{\tilde{\chi}_1^0}$ of 540 GeV;

- Bottom exclusion taken from SUS-16-032. Mass splits up to 10 GeV have been probed.
CMS Stop **two-lepton** CMS-SUS-17-001

- Searches based on different flavors of m_{T^2} calculation ($m_{T^2}(\ell\ell)$, $m_{T^2}(b\ell\bar{b}l)$):
 \[
 M_{T^2}(\ell\ell) = \min_{\vec{p}_T^{\text{miss}} = \vec{p}_T^{\text{miss}} + \vec{E}_T^{\text{miss}}} \left(\max \left[M_T(\vec{p}_T^{\text{vis1}}, \vec{p}_T^{\text{miss}}), M_T(\vec{p}_T^{\text{vis2}}, \vec{p}_T^{\text{miss}}) \right] \right)
 \]

- Construct 12 disjoint SRs based on E_T^{miss}, $m_{T^2}(\ell\ell)$ and $m_{T^2}(b\ell\bar{b}l)$:
 - Dominant background in low m_{T^2} region comes from single top and $t\bar{t}$
 - In high m_{T^2} regions $t\bar{t} + X$ has significant contributions with $t\bar{t}Z(\nu\nu)$ being the dominant one. CRs defined in

$$pp \rightarrow t\bar{t}Z \rightarrow (t \rightarrow b\ell^\pm\nu)(t \rightarrow bjj)(Z \rightarrow \ell\ell)$$

<table>
<thead>
<tr>
<th>leptons</th>
<th>2 (e or μ), opposite charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m(\ell\ell)$</td>
<td>≥ 20</td>
</tr>
<tr>
<td>$</td>
<td>M_Z - m(\ell\ell)</td>
</tr>
<tr>
<td>N_{jets}</td>
<td>≥ 2</td>
</tr>
<tr>
<td>N_{bjets}</td>
<td>≥ 1</td>
</tr>
<tr>
<td>E_T^{miss}</td>
<td>$> 80\text{ GeV}$</td>
</tr>
<tr>
<td>S</td>
<td>$> 5\text{ GeV}^{1/2}$</td>
</tr>
<tr>
<td>$\cos \Delta\phi(E_T^{\text{miss}}, j_1)$</td>
<td>< 0.80</td>
</tr>
<tr>
<td>$\cos \Delta\phi(E_T^{\text{miss}}, j_2)$</td>
<td>< 0.96</td>
</tr>
</tbody>
</table>
Observation agrees within errors with the Standard Model expectations

95% CL exclusion limits on the mass plane $m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0}$

Interpretations on $\tilde{t} \rightarrow b\tilde{\chi}_1^\pm$, $\tilde{\chi}_1^\pm \rightarrow W^{\pm} \tilde{\chi}_1^0$ are also available
Summary of $\tilde{t}_1 \rightarrow t\tilde{\chi}_1^0$ searches

- Updated results from CMS are expected in time for Moriond QCD
Complementary models studied from ATLAS and CMS
• Searches for \tilde{t} production with Higgs (h) or Z bosons
 $\tilde{t}_1 \rightarrow t\tilde{\chi}_2^0$, $\tilde{\chi}_2^0 \rightarrow h/Z\tilde{\chi}_1^0$
 $\tilde{t}_2 \rightarrow h/Z\tilde{t}_1$, $\tilde{t}_1 \rightarrow t\tilde{\chi}_1^0$. Provide additional sensitivity in the region $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim m_t$
• Final states considered:
 • three-leptons plus a b–tag jet ($3\ell 1b$), aiming at top squark decays involving Z boson
 • Dominant backgrounds: $t\bar{t}Z$, WZ.
 • one-lepton plus four b – tag jet ($1\ell 4b$), targeting top squark decays involving Higgs boson
 • Dominant background: $t\bar{t}$;
 • Three overlapped SRs targeting different mass splits ($m_{\tilde{t}_2} - m_{\tilde{\chi}_1^0}$) have been designed for each final-state
• **Top:** 95% CL exclusion limits on $m_{\tilde{t}_2} - m_{\tilde{\chi}_1^0}$ for a fixed $m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0} = 180$ GeV, assuming $\text{BR}(\tilde{t}_2 \rightarrow Z\tilde{t}_1)=1$ (left) $\text{BR}(\tilde{t}_2 \rightarrow h\tilde{t}_1)=1$ (right)

• **Bottom right:** 95% CL exclusion limits on $m_{\tilde{t}_1} - m_{\tilde{\chi}_2^0}$ for $m_{\tilde{\chi}_1^0} = 0$ GeV, assuming a $\text{BR}(\tilde{\chi}_2^0 \rightarrow Z\tilde{\chi}_1^0)=0.5$ and $\text{BR}(\tilde{\chi}_2^0 \rightarrow h\tilde{\chi}_1^0)=0.5$
Stop Searches performed in R-Parity Violation models

- Final-state examined: $1\ell + jets$ final state
- SRs are binned in jet multiplicity with the lower one being at five-jets
- Dominant backgrounds in $N_{b-tag} = 0$ are $t\bar{t} + jets$ and $W + jets$ while for $N_{b-tag} > 0$ the dominant source is $t\bar{t} + jets$
Stop Searches performed in R-Parity Violation models

Final-state examined: $1\ell + \text{jets}$ final state

SRs are binned in jet multiplicity with the lower one being at five-jets

Dominant backgrounds in $N_{b\text{-tag}} = 0$ are $t\bar{t} + \text{jets}$ and $W + \text{jets}$ while for $N_{b\text{-tag}} > 0$ the dominant source is $t\bar{t} + \text{jets}$
... from stops ...

... to sbottoms ...
CMS Sbottom searches

CMS-SUSY-16-032

- **Non-compressed** ($\Delta m(\tilde{b}_1, \tilde{\chi}_1^0) > 150$ GeV):
 - Main discriminants:
 \[\text{Min}[M_T(j_1, E_{\text{miss}}^T), M_T(j_2, E_{\text{miss}}^T)], \text{cotransverse mass } (m_{CT}) \text{ and } H_T \text{ (scalar sum of the two leading jets)} \]
 - SRs binned in m_{CT} and H_T

- **Compressed** ($\Delta m(\tilde{b}_1, \tilde{\chi}_1^0) < 150$ GeV):
 - Based on an ISR jet recoiling against E_{T}^{miss}.
 - Compressed SRs are binned in E_{T}^{miss} and $b/c-\text{tag}$ jet multiplicity

Plots

- **Left plot**: Plot of m_{CT} vs.Events, with different signal categories.
- **Middle plot**: Two-panel plot showing $N_{b\text{-tags}} + N_{c\text{-tags}} + N_{SV}$ vs m_{SP} and m_{b} vs 95% CL upper limit on cross section (pb).
- **Right plot**: 3D scatter plot with CMS Preliminary, 35.9 fb$^{-1}$, $\sqrt{s} = 13$ TeV.
CMS search in razor + $H \rightarrow \gamma \gamma$ (sbottom) CMS-SUY-16-045

- In the MSSM Higgs bosons may be produced through the cascade decays of heavier sparticles;
- Search performed in $H \rightarrow \gamma \gamma$ decay-mode and in association with at least one jet
- Approach based on razor variables and the momentum and mass resolution of the diphoton system
- Two main classes of background:
 - SM Higgs (taken from MC)
 - non-resonant QCD estimated from a data-driven technique by fitting the $\gamma \gamma$ mass distribution (dominant systematic uncertainty arises from normalization and shape of that function)
CMS search in razor+ $H \rightarrow \gamma\gamma$ (sbottom)

Left: Observed significance in units of standard deviations per search region; The yellow and green bands represent the 1σ and 2σ regions, respectively.

Right: 95% CL exclusion limits on the mass plane $m_{\tilde{b}} - m_{\chi_1^0}$

- $pp \rightarrow \tilde{b}\tilde{b}, \tilde{b} \rightarrow b\chi_2^0 \rightarrow bH\chi_1^0$
- Observed ± 1σ_{theory} $m_{\chi_2^0} - m_{\chi_1^0} = 130$ GeV
- Expected ± 1σ_{experiment}

CMS Preliminary 35.9 fb$^{-1}$ (13 TeV)
Compressed Electroweakino searches
Naturalness imposes constraints on the masses of higgsinos.

Light higgsinos would likely have a compressed mass spectrum.

Experimentaly challenging signature: Muons p_T down to 3.5 GeV has been considered.

Results interpreted in the context of direct $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$ (cross sections based on Wino scenario).
Summary

• Both experiments have a rich program on the SUSY production of 3^{rd} generation squarks;

• Both experiments improved the object reconstruction and identification to obtain sensitivities in very challenging regions in the mass plane $m_{\tilde{t}_1} - m_{\chi_1^0}$

• Advanced techniques have also been employed to gain sensitivity in the different regions;

• Current searches explore a wide range of final states and topologies;

• All searches produced null results so far;

• More data are expected to be collected in the upcoming years, stay tuned and you never know what the data might be hiding!

Thank you
Back-up
Background estimation strategies

SUSY searches heavily rely on our understanding of the Standard Model processes

Reducible background
Receives contributions from non-prompt leptons. Estimation based on data-driven techniques (Matrix Method, Fake Factor);

Irreducible backgrounds
Normalize Monte Carlo predictions ($t\bar{t}$, VV, ..) to data in dedicated Control Regions (CR);
- Extracted Normalization Factor (NF) is validated in Validation Regions (VR);
- Final background estimation comes from a simultaneous likelihood fit of Signal Regions and CR;

Backgrounds producing “fake” E_T^{miss} due to jet mismeasurement
Contributions from this category are suppressed by requiring the jets and E_T^{miss} to not point in the same direction ($\Delta\phi(jets, E_T^{miss})$)

Small backgrounds
Contributions from these sources are taken directly from Monte Carlo predictions.
• Searches performed for right-handed \tilde{t} pair production with the \tilde{t} decaying to a bino or higgsino $\tilde{\chi}_1^0$;

• $\tilde{\chi}_1^0$ undergoes RPV decays with a non-zero λ''_{323} ($\approx \mathcal{O}(10^{-1} - 10^{-2})$)

• Final-state examined: $1\ell + jets$ final state

• Three sets of jet p_T thresholds (40, 60, 80) have been considered to provide sensitivity to a broad range of possible signals

• SRs are binned in jet multiplicity with the lower one being at five-jets

• Dominant backgrounds in $N_{b-tag} = 0$ are $t\bar{t} + jets$ and $W + jets$ while for $N_{b-tag} > 0$ the dominant source is $t\bar{t} + jets$
• \(t\bar{t} + \text{jets}\) estimation based on a data-driven technique. Extraction of an initial template of the \(b\)–tag multiplicity spectrum in events with five jets and the parameterization of the evolution of this template to higher jet multiplicities.

\[
N_{j,b}^{t\bar{t}+\text{jets}} = N_{j}^{t\bar{t}+\text{jets}} \cdot f_{j,b}
\]

\[
f_{(j+1),b} = f_{j,b} \cdot x_0 + f_{j,(b-1)} \cdot x_1 + f_{j,(b-2)} \cdot x_2
\]

where \(x_i\) describe the probability of one additional jet to be either not \(b\)–tagged \((x_0)\), \(b\)–tagged \((x_1)\) or \(b\)–tagged and leading to a second \(b\)–tagged jet to move into the fiducial acceptance \((x_2)\)

• Validation of the jet-scaling parameterization in dileptonic \(t\bar{t}\) events
ATAS Stop RPV

ATLAS-CONF-2017-013

- Right: Expected SM background and observation in different b–tag multiplicities in $\ell + 9$jets final state

- Left: 95% CL limits on the mass plane $m_{\tilde{t}_1} - m_{\tilde{\chi}^0_1}$ for pure bino or pure higgsino $\tilde{\chi}^0_1$
ATLAS Stop two-leptons \textit{ATLAS-CONF-2016-076}

..highlights from 2016 summer conferences

- Examining \tilde{t}_1 pair production in three-body-decays;
- Searches based on super-razor variables;
- Particularly sensitive in $m_W + m_b < \Delta m(\tilde{t}_1, \tilde{\chi}_1^0) < m_t$
- Two dedicated SRs, one for $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim m_W$ and the other $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim m_t$
$\tilde{t} \rightarrow b\tilde{\chi}_1^\pm$, $\tilde{\chi}_1^\pm \rightarrow W\tilde{\chi}_1^0$

...motivated by gaugino universality

Searches based on fully hadronic final states

ATLAS-CONF-2016-077 CMS-SUS-16-049

Searches based on *one-lepton* final states

ATLAS-CONF-2016-050 CMS-PAS-SUS-16-028

To be updated from both experiments

ATLAS

Stop pair production, $t \rightarrow b\tilde{\chi}_1^\pm$, $m_{\tilde{t}} = 2 \times m_{\tilde{\chi}_1}$

ATLAS Preliminary SSB+SRC $F_s = 13$ TeV, 13.3 fb$^{-1}$

All limits at 95% CL

CMS

CMS Preliminary 35.9 fb$^{-1}$ (13 TeV)

$pp \rightarrow t\bar{t}\rightarrow b\tilde{\chi}_1^\pm$, $W^* \tilde{\chi}_1^\pm$

NLO+NLL exclusion

Observed $\pm 1 \sigma_{\text{theory}}$, $m_{\tilde{t}} = (m_{\tilde{t}} + m_{\tilde{\chi}_1})/2$

Expected $\pm 1 \sigma_{\text{experiment}}$

CMS assumption:

$m_{\tilde{\chi}_1^\pm} = 2 \times m_{\tilde{\chi}_1^0}$

ATLAS assumption:

$m_{\tilde{\chi}_1^\pm} = (m_{\tilde{t}} + m_{\tilde{\chi}_1^0})/2$

ATLAS

Stop pair production, $t \rightarrow b\tilde{\chi}_1^\pm$, $m_{\tilde{t}} = 2 \times m_{\tilde{\chi}_1}$

ATLAS Preliminary $F_s = 13$ TeV, 20 fb$^{-1}$

All limits at 95% CL

CMS

CMS Preliminary 12.9 fb$^{-1}$ (13 TeV)

$pp \rightarrow t\bar{t}\rightarrow b\tilde{\chi}_1^\pm$, $W^* \tilde{\chi}_1^\pm$

NLO+NLL exclusion

Observed $\pm 1 \sigma_{\text{theory}}$, $m_{\tilde{t}} = (m_{\tilde{t}} + m_{\tilde{\chi}_1})/2$

Expected $\pm 1 \sigma_{\text{experiment}}$

CMS assumption:

$m_{\tilde{\chi}_1^\pm} = 2 \times m_{\tilde{\chi}_1^0}$

ATLAS assumption:

$m_{\tilde{\chi}_1^\pm} = (m_{\tilde{t}} + m_{\tilde{\chi}_1^0})/2$
Searches for $\tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$;

Examining final states with exactly two b-tag jets and E_T^{miss}.

Main discriminant variable:

$$m_{CT}^2(v_1, v_2) = [E_T(v_1) + E_T(v_2)]^2 - [p_T(v_1) - p_T(v_2)]^2$$

Bound for \tilde{b} is given by:

$$m_{CT}^{\text{max}} = \left(\frac{m_{\tilde{b}_1}^2 - m_{\chi_1^0}^2}{m_{\tilde{b}_1}} \right)$$
New results will be available on Moriond QCD

- Four main SRs with different N_{jets} and M_{T2}^W requirements which are then binned in E_T^{miss}

- Main discriminants:
 M_{T2}^W: the information from on-shell $W -$ boson is included in the m_{T2} calculator
 Modified topness variable t_{mod} for further background rejection

<table>
<thead>
<tr>
<th>N_{jets}</th>
<th>M_{12}^W [GeV]</th>
<th>t_{mod}</th>
<th>E_T^{miss} [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 2</td>
<td>> 200</td>
<td>> 6.4</td>
<td>250–350 350–450 > 450</td>
</tr>
<tr>
<td>= 3</td>
<td>> 200</td>
<td></td>
<td>250–350 350–450 > 450 450–550 > 550</td>
</tr>
<tr>
<td>≥ 4</td>
<td>≤ 200</td>
<td></td>
<td>250–350 350–450 > 450</td>
</tr>
</tbody>
</table>

A. Petridis 33 / 24
CMS Stop **one-soft-lepton** CMS-PAS-SUS-16-031

- Direct $\tilde{t}_1 \tilde{t}_1$ production with subsequent four-body-decays;
- Exploring the very-low p_T region of leptons
ATLAS Stop 1-lepton ATLAS-CONF-2016-050

Highlights from 2016 summer conferences

- **SR1** targets low mass splittings (decay products are fully resolved)
- **tN_high** targets the high mass region
- $m_T = \sqrt{2p_T^\ell E_T^{\text{miss}}(1 - \cos(\Delta \phi))}$
- asymmetric-m_{T2} is used to reject $t\bar{t}$ events where one lepton is not reconstructed;
- **topness**: a minimising χ^2–type function quantifying the compatibility with a dileptonic $t\bar{t}$ event
Table 1: A summary of the search region bins in each category is presented. The functional form used to model the non-resonant background is also listed. An exponential function of the form $e^{-\alpha x}$ is denoted as "single-exp"; a linear combination of two independent exponential functions of the form $e^{-\alpha x}$ and $e^{-\beta y}$ is denoted as "double-exp"; a modified exponential function of the form $e^{-\alpha x^2}$ is denoted as "mod-exp"; and a Bernstein polynomial of degree n is denoted by "poly-n".

<table>
<thead>
<tr>
<th>Bin Number</th>
<th>Category</th>
<th>M_R (GeV) Bin</th>
<th>R^2 Bin</th>
<th>Non-Resonant Bkg Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>HighPt</td>
<td>600 - ∞</td>
<td>0.025 - ∞</td>
<td>single-exp</td>
</tr>
<tr>
<td>1</td>
<td>HighPt</td>
<td>150 - 600</td>
<td>0.130 - ∞</td>
<td>single-exp</td>
</tr>
<tr>
<td>2</td>
<td>HighPt</td>
<td>1250 - ∞</td>
<td>0.000 - 0.025</td>
<td>single-exp</td>
</tr>
<tr>
<td>3</td>
<td>HighPt</td>
<td>150 - 450</td>
<td>0.000 - 0.130</td>
<td>poly-3</td>
</tr>
<tr>
<td>4</td>
<td>HighPt</td>
<td>450 - 600</td>
<td>0.000 - 0.035</td>
<td>poly-3</td>
</tr>
<tr>
<td>5</td>
<td>HighPt</td>
<td>450 - 600</td>
<td>0.035 - 0.130</td>
<td>single-exp</td>
</tr>
<tr>
<td>6</td>
<td>HighPt</td>
<td>600 - 1250</td>
<td>0.000 - 0.015</td>
<td>double-exp</td>
</tr>
<tr>
<td>7</td>
<td>HighPt</td>
<td>600 - 1250</td>
<td>0.015 - 0.025</td>
<td>single-exp</td>
</tr>
<tr>
<td>8</td>
<td>$H(\gamma\gamma)$-H/Z(bb)</td>
<td>150 - ∞</td>
<td>0.000 - ∞</td>
<td>single-exp</td>
</tr>
<tr>
<td>9</td>
<td>HighRes</td>
<td>150 - 250</td>
<td>0.000 - 0.175</td>
<td>mod-exp</td>
</tr>
<tr>
<td>10</td>
<td>HighRes</td>
<td>150 - 250</td>
<td>0.175 - ∞</td>
<td>single-exp</td>
</tr>
<tr>
<td>11</td>
<td>HighRes</td>
<td>250 - ∞</td>
<td>0.05 - ∞</td>
<td>single-exp</td>
</tr>
<tr>
<td>12</td>
<td>HighRes</td>
<td>250 - 600</td>
<td>0.000 - 0.05</td>
<td>poly-2</td>
</tr>
<tr>
<td>13</td>
<td>HighRes</td>
<td>600 - ∞</td>
<td>0.000 - 0.05</td>
<td>single-exp</td>
</tr>
<tr>
<td>9</td>
<td>LowRes</td>
<td>150 - 250</td>
<td>0.000 - 0.175</td>
<td>poly-3</td>
</tr>
<tr>
<td>10</td>
<td>LowRes</td>
<td>150 - 250</td>
<td>0.175 - ∞</td>
<td>single-exp</td>
</tr>
<tr>
<td>11</td>
<td>LowRes</td>
<td>250 - ∞</td>
<td>0.05 - ∞</td>
<td>poly-2</td>
</tr>
<tr>
<td>12</td>
<td>LowRes</td>
<td>250 - 600</td>
<td>0.000 - 0.05</td>
<td>mod-exp</td>
</tr>
<tr>
<td>13</td>
<td>LowRes</td>
<td>600 - ∞</td>
<td>0.000 - 0.05</td>
<td>single-exp</td>
</tr>
</tbody>
</table>