WW production cross section at 13 TeV at the ATLAS detector

Baishali Dutta (DESY Zeuthen) on behalf of the ATLAS collaboration

La Thuile, 19th March, 2017

Introduction

- Measurement of the fiducial/total W+W⁻ cross section with 2015 data collected at the ATLAS detector (luminosity 3.16 fb⁻¹) [arXiv: <u>1702.04519</u>, submitted to Phys. Lett. B.]
- Production processes

Motivation

- To understand electroweak physics of Standard Model
- Sensitive to new physics (anomalous triple gauge couplings)
- Important background for Higgs measurements $(H \rightarrow W^+W^-)$

Signal signature

Signal

Selecting WW events

- Two high energetic different flavor leptons
 - One e[±]µ[∓] pair selected
- Large missing transverse momentum (E_Tmiss)
- Jet veto (no jet in the event)

Main backgrounds

Top and Drell-Yan (Z/γ +jets)

- Transfer Factor approach
- Normalization is obtained using dedicated orthogonal background control region and extrapolated to the signal region

W+jets and multijet(QCD)

- Data-driven Matrix Method
- Efficiencies of real and fake (misidentified) leptons to pass final event selection, are used to estimate the background contribution due to misidentified leptons

Other diboson (WZ/ZZ. V+ γ)

 Estimated from Monte Carlo simulation

Determination of cross section

 Initial background estimates are then refined by a simultaneous likelihood fit over signal and control regions (Top and Drell-Yan)

1351 data events are observed in final event selection

Fiducial cross section definition

Likelihood fit results

$$\sigma_{fid} = \frac{N_{data} - N_{bkg}}{L.C_{WW}}$$

L : Luminosity 3.16 fb⁻¹ *Cww* : Detector acceptance factor accounts for detector efficiencies and resolution

Total uncertainty is dominated by

- Jet and E_Tmiss related uncertainties
- Background estimations
- Data statistics

Theoretical predictions

- WW production processes, known at different $O(\alpha_s)$ are combined to get the final total and fiducial cross section predictions, which we refer to as nNNLO+H
- Interference between gluon gluon (non-resonant and resonant) processes are neglected

Results

Fiducial cross section Predictions:

Acceptance factor going from total to fiducial phase space is calculated in two different ways

Parton level prediction in fiducial

phase space + parton to particle level corrections

Acceptance factor based on MC

shower generator (Powheg+Pythia8)
 x total cross section prediction

Summary

- Predictions are in very good agreement (no large corrections coming from higher orders in acceptance)
- Good agreement between predictions and measurements

Results

Cross section ratio measurement

Summary

• Cross section ratio shows excellent agreement within large uncertainties

Thank You

Backup

Event selection

Selection requirement	Selection value		
p_{T}^ℓ	> 25 GeV		
η^ℓ	$ \eta^e < 2.47$ (excluding 1.37 < $ \eta^e < 1.52$)		
	$ \eta^{\mu} < 2.4$		
Lepton identification	Tight (electron), Medium (muon)		
Lepton isolation	Gradient working point		
Number of additional leptons ($p_T > 10 \text{ GeV}$)	0		
$m_{e\mu}$	> 10 GeV		
Number of jets with $p_{\rm T}$ >25(30) GeV, $ \eta $ <2.5(4.5)	0		
Number of <i>b</i> -tagged jets ($p_T > 20$ GeV, 85% op. point)	0		
$E_{\mathrm{T, Rel}}^{\mathrm{miss}}$	> 15 GeV		
$p_{\mathrm{T}}^{\mathrm{miss}}$	> 20 GeV		

Data/MC comparisons in signal region

Data/MC comparisons in control regions

Observed/estimated number of events

Process	Signal region	Top-quark	Drell–Yan
		control region	control region
WW signal	997 ± 69	49 ± 12	75.3 ± 5.4
Drell–Yan	62 ± 23	49 ± 29	1568 ± 45
$t\bar{t}$ +single top	177 ± 33	2057 ± 81	3.5 ± 1.6
W+jets/multi-jet	78 ± 41	70 ± 55	0 ± 17
Other dibosons	38 ± 12	6.3 ± 3.5	19.2 ± 6.1
Total	1351 ± 37	2232 ± 47	1666 ± 41
Data	1351	2232	1666

Associated uncertainties

Sources of uncertainty		Relative uncertainty for $\sigma_{WW \to e\mu}^{\text{fid}}$		
Jet selection and energy scale & res	solution		7.3%	- Biggest
b-tagging			1.3%	
$E_{\rm T}^{\rm miss}$ and $p_{\rm T}^{\rm miss}$	Object		1.7%	
Electron			1.0%	
Muon			0.4%	
Pile-up	Deam		0.9%	
Luminosity	Bean		2.1%	
Top-quark background theory			2.4%	
Drell–Yan background theory		-	1.5%	
W+jet and multi-jet background	Bk		3.8%	
Other diboson backgrounds			1.1%	
Parton shower	Corre	ctions r	3.1%	
PDF	con	JMC	0.2%	
QCD scale	USIN	6	0.2%	
MC statistics	Cto	tistics	1.2%	
Data statistics	Sla	lloe	3.7%	
Total uncertainty			11%	

Theoretical predictions

Fiducial phase space

Fiducial selection requirement	Cut value
p_{T}^{ℓ}	$> 25 { m GeV}$
$ \eta_\ell $	< 2.5
$m_{e\mu}$	$> 10 { m GeV}$
Number of jets with $p_T > 25(30)$ GeV, $ \eta < 2.5(4.5)$	0
$E_{\mathrm{T, Rel}}^{\mathrm{miss}}$	$> 15 { m GeV}$
$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 20 { m GeV}$

Total/fiducial cross section predictions

$pp \rightarrow WW$ sub-process	Order of	$\sigma_{WW}^{ m tot}$	A	$\sigma_{WW \to e\mu}^{\text{fid}}$
	$\alpha_{ m s}$	[pb]	[%]	[fb]
$q\bar{q}$ [9,13]	$\mathcal{O}(\alpha_{\rm s}^2)$	111.1 ± 2.8	16.20 ± 0.13	422 + 12 - 11
gg (non-resonant) [33]	$\mathcal{O}(lpha_{ m s}^3)$	$6.82 \stackrel{+}{_{-}} \stackrel{0.42}{_{-}} \stackrel{0.55}{_{-}}$	$28.1 + 2.7 \\ - 2.3$	44.9 ± 7.2
$gg \to H \to WW$ [67][30]	$\mathcal{O}(\alpha_{\rm s}^5)$ tot. / $\mathcal{O}(\alpha_{\rm s}^3)$ fid.	$10.45 \stackrel{+}{_{-}} \stackrel{0.61}{_{-}}$	4.5 ± 0.6	11.0 ± 2.1
$\overline{q\bar{q} + gg}$ (non-resonant) +	nNNLO+H	$128.4 \begin{array}{c} + 3.5 \\ - 3.8 \end{array}$	$15.87^{+}_{-}~^{0.17}_{0.14}$	478 ± 17
$gg \to H \to WW$				

Links to references: <u>ref [9]</u>, <u>ref [13]</u>, <u>ref [33]</u>, <u>ref [30]</u>, <u>ref [67]</u>