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Non-resonant HH production

￭ σHH : main way to extract Higgs 
trilinear coupling λHHH 
□ direct information on the shape of 

the scalar Higgs potential 
□ dominated by gg fusion, other 

production modes out of reach 
with current data 

￭ Destructive interference of the 
two diagrams → small σHH 

￭ Effective lagrangian used to 
model BSM effects: anomalous 
λHHH and yt couplings and three 
new contact interactions 
□ large modification of σHH
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Figure 3: Total cross sections at the LO and NLO in QCD for HH production channels, at the
√

s =14 TeV LHC as a function of the
self-interaction coupling λ. The dashed (solid) lines and light- (dark-)colour bands correspond to the LO (NLO) results and to the scale and
PDF uncertainties added linearly. The SM values of the cross sections are obtained at λ/λSM = 1.
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2 Phenomenology53

In the Standard Model (SM), after the EWSB, the Higgs potential can be written with the fol-
lowing formula:

V(h) =
1
2

m2
hh2 + lhhhvh3 +

1
4

lhhhhh4 (1)

which is a two parameter model. One of them is the Higgs boson vacuum expectation value
(v), determined by the Fermi constant (GF), v = (

p
2GF)�1/2 ' 246 GeV. The other is the Higgs

boson mass mh that is measured to be 125.09 ± 0.24 GeV in the most precise and recent results
combining the ATLAS and CMS Run-I 4` and gg final states [4]. In the SM, the trilinear Higgs
self-coupling, lhhh is not an independent parameter, but it is a function of v and mh:

lhhh ⌘ lSM
hhh =

m2
h

2v2 ' 0.129. (2)

At LHC lhhh is only accessible and can be measured in Higgs boson pair production, pp ! hh.54

The gluon fusion process is the dominant h pair production process and its cross section is55

about one order of magnitude larger than the second largest process which is vector boson fu-56

sion. Two diagrams are involved in the gg ! hh production (see Figure 1). In both diagrams

Ytg

g h

h

t
h

g

g h

h

t

λHHH SM LO diagrams

Yt

hhh

Figure 1: The Higgs boson pair production diagrams contributing to the gluon fusion process
at LO are shown.

57

(box and triangle) the h pair production is mediated by loops of heavy quarks which in the SM58

are mainly top quarks. Bottom quark loops contribute to the total cross section with less than59

1% at LO. The triangle and box diagrams interfere and the interference of the two amplitudes60

depend by the value of lhhh, providing a way to measure it. The gluon fusion process cross sec-61

tion is known at NNLO in QCD using the infinite top quark mass approximation and perform-62

ing the NNLL threshold resummation [5, 6]. The numerical value of the cross section for the63

LHC centre of mass energies of 13 TeV at mh = 125.09 GeV is sSM
hh (13TeV) = 37.9 fb +4.3

�6.0%(scale64

unc.) ±2.1%(PDF unc.) ±3.1%(PDF+aS unc.). It is calculated using the new PDF4LHC rec-65

ommendations for LHC Run-II [7] and the renormalisation and factorisation scales is equal to66

mhh/2.67

Due to the small cross sections decay channels in which one Higgs boson goes to bb should68

be chosen (BR(h !bb) = 0.577). The Table 1 shows some interested decay channels for the h69

pair production, their relative branching ratio, and the inclusive expected number of events at70

13 TeV for two benchmark integrate luminosity (L) scenari, 5 fb�1 and 300 fb�1. The symbol `71

refers to an electron or a muon.72

Phenomenological studies showed that the bbtt channel is one of the most promising, having73

a quite high BR (7.3%) and a relatively small contamination.74

Finally to be underline that many model of physics Beyond the Standard Model (BSM) predict a75

value of production cross section of Higgs boson pair production, shh, that significantly differs76

from SM prediction. In particular, shh can be enhanced for two reasons.77

σgg→HH = 33.49+4.3-6.0 (scale) ± 2.1 (PDF) ± 2.3 (𝛼s) fb 
[13 TeV, NNLO + NNLL with top mass effects, HXSWG, arXiv:1610.07922]

Phys.Lett. B732 (2014) 142-149

H

H
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Resonant HH production would be evidence for a new state, not predicted by the SM

Resonant HH production

￭ Many different theories predict resonant Higgs pair production X→HH 
□ just a few examples quoted in the scheme! 

￭ Very different theoretical motivation, but similar experimental signature 
￭ Full coverage of a broad mX range is crucial to maximize the sensitivity to 

different models 
□ no “golden” channel, multiple analysis techniques
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Which final state?

￭ Phenomenologically rich set of 
final states 

￭ One H→bb or H→WW decay 
required to keep BR high 
enough 
□ common techniques across 

analyses (e.g. b-tagging) + 
channel-specific challenges 

￭ Complementarity of the 
channels 
□ similar sensitivity to 

non-resonant production 
□ different coverage in mX
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￭ Four channels explored and 
combined in ATLAS 
□ bb𝛾𝛾 and bb𝜏𝜏 with similar 

sensitivity at low mass, bbbb 
dominant at high mass 

￭ bb𝛾𝛾 + bb𝜏𝜏 + bbbb explored 
in CMS but not combined yet 
□ exclude 58 X SM (bb𝜏𝜏), 

74 X SM (bb𝛾𝛾)
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sensitivity followed by the hh!��bb analysis. The observed combined limit is slightly weaker than that
of the hh!bbbb analysis, largely due to the aforementioned excess.

Table 4: The expected and observed 95% CL upper limits on the cross sections of nonresonant gg!hh production
at
p

s = 8 TeV from individual analyses and their combinations. SM values are assumed for the h decay branching
ratios. The cross-section limits normalized to the SM value are also included.

Analysis ��bb ��WW⇤ bb⌧⌧ bbbb Combined

Upper limit on the cross section [pb]
Expected 1.0 6.7 1.3 0.62 0.47
Observed 2.2 11 1.6 0.62 0.69

Upper limit on the cross section relative to the SM prediction
Expected 100 680 130 63 48
Observed 220 1150 160 63 70

The impact of systematic uncertainties on the cross-section limits is studied using the signal-strength
parameter µ, defined as the ratio of the extracted to the assumed signal cross section (times branching ratio
BR(H!hh) for the resonant search). The resulting shifts in µ depend on the actual signal-strength value.
For illustration, they are evaluated using a cross section of 1 pb for gg! (H!)hh, comparable to the limits
set. The e↵ects of the most important uncertainty sources are shown in Table 5. The leading contributions
are from the background modeling, b-tagging, the h decay branching ratios, jet and Emiss

T measurements.
The large impact of the b-tagging systematic uncertainty reflects the relatively large weight of the hh!
bbbb analysis in the combination. For the hh!bb⌧⌧ analysis alone, the three leading systematic sources
are the background estimates, jet and Emiss

T measurements, and lepton and ⌧had identifications. For the
hh! ��WW⇤ analysis, they are the background estimates, jet and Emiss

T measurements and theoretical
uncertainties of the decay branching ratios of the Higgs boson h.

For the resonant production, limits are set on the cross section of gg!H production of the heavy Higgs
boson times its branching ratio BR(H ! hh) as a function of the heavy Higgs boson mass mH . The
observed (expected) limits of the hh!bb⌧⌧ and hh!��WW⇤ analyses are illustrated in Fig. 5 and listed

Table 5: The impact of the leading systematic uncertainties on the signal-strength parameter µ of a hypothesized
signal for both the nonresonant and resonant (mH = 300, 600 GeV) searches. For the signal hypothesis, a Higgs
boson pair production cross section (�(gg!hh) or �(gg!H) ⇥ BR(H!hh)) of 1 pb is assumed.

Nonresonant search Resonant search
mH = 300 GeV mH = 600 GeV

Source �µ/µ [%] Source �µ/µ [%] Source �µ/µ [%]
Background model 11 Background model 15 b-tagging 10
b-tagging 7.9 Jet and Emiss

T 9.9 h BR 6.3
h BR 5.8 Lepton and ⌧had 6.9 Jet and Emiss

T 5.5
Jet and Emiss

T 5.5 h BR 5.9 Luminosity 2.7
Luminosity 3.0 Luminosity 4.0 Background model 2.4
Total 16 Total 21 Total 14
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Searches at 8 TeV
h decay branching ratios. To reflect the better mass resolutions of the hh!bbbb and hh!��bb analyses,
the combination is performed with smaller mass steps than those of the hh! bb⌧⌧ and hh! ��WW⇤

analyses. The most significant excess in the combined results is at a resonance mass of 300 GeV with
a local significance of 2.5�, largely due to the 3.0� excess observed in the hh ! ��bb analysis [21].
The upper limit on �(gg!H) ⇥ BR(H! hh) varies from 2.1 pb at 260 GeV to 0.011 pb at 1000 GeV.
These limits are shown in Fig. 6 as a function of mH . For the low-mass region of 260–500 GeV, both
the hh ! ��bb and hh ! bb⌧⌧ analyses contribute significantly to the combined sensitivities. Above
500 GeV, the sensitivity is dominated by the hh!bbbb analysis. Table 5 shows the impact of the leading
systematic uncertainties for a heavy Higgs boson mass of 300 GeV and 600 GeV. As in the nonresonant
search, the systematic uncertainties with the largest impact on the sensitivity are from the uncertainties
on the background modeling, b-tagging, jet and Emiss

T measurements, and the h decay branching ratios.
These limits are directly applicable to models such as those of Refs. [72–77] in which the Higgs boson h
has the same branching ratios as the SM Higgs boson.
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ATLAS-CONF-2016-049 
CMS-PAS-B2G-16-008 
CMS-PAS-HIG-16-002 
CMS-PAS-HIG-16-026 

HH→bbbb
￭ High BR, large contamination from 

multijet background 
□ estimated from data 

￭ Two event topologies explored 
□ resolved: four separate jets 
□ boosted: jets from H→bb decay overlap, 

use jet with radius 0.8/1.0 + substructure 
techniques 

￭ Crucially relies on b-tagging 
□ b-tag at trigger level for resolved 

analyses 
□ double b-tagging on 0.8 radius jet based 

on multivariate method for CMS boosted 
analysis 

￭ Invariant masses of selected jets used 
to search for a signal
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￭ ATLAS: 
□ 13.3 fb-1 analyzed 
□ non-resonant search excludes 29 X SM 

￭ CMS 
□ 2.3/2.7 fb-1 analyzed 
□ non resonant search excludes 324 x SM 
□ search for both spin-0 and spin-2 resonances 



           Luca Cadamuro (LLR)                                19/03/2017       Search and prospects for HH production 8

obs: 410 x SM
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￭ WW→ℓνℓ ℓνℓ (ℓ = e, μ) ⟹ bbee, bbμμ, bbeμ 
￭ Dominant background: tt (same final state) 
□ constrained from mbb sideband 

￭ Exploit event kinematics to select signal using BDT 
□ used as final discriminant 

￭ Updated results on 35.9 fb-1 are coming for 
Moriond QCD!
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￭ 3 𝜏𝜏 final states: μ𝜏h, e𝜏h, 𝜏h𝜏h 

□ require the presence of μ, e, 𝜏h candidates  
and 2 jets in the event 

□ m𝜏𝜏 (from likelihood technique) and mbb must be 
compatible with mH = 125 GeV 

￭ Main backgrounds: 
□ tt : from MC simulation 
□ Drell-Yan : MC simulation corrected in data Z→μμ 

sideband 
□ multijet : from data sideband 

￭ Categorization on the selected H→bb jet 
candidates 
□ 2b-tagged jet category 
□ 1b-tagged jet + 1 untagged jet category 
□ “boosted” category with a R=0.8 jet to improve 

reconstruction H decays at high mX

9
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new results!
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￭ tt background rejected with 
BDT method in μ𝜏h and e𝜏h 
final states 
□ based on angular separation 

of leptons and reconstructed 
H candidates and mT 

￭ Fitted observables: 
□ resonant search: kinematic 

reconstruction of HH decay 
□ non-resonant search: 

“stransverse mass” MT2 that 
has optimal separation of 
signal from background 

µ𝜏h

𝜏h𝜏h

HIG-17-002	approval ℎℎ → ##$$	at	 &� = 13 TeV	- K.	Androsov

Variables	for	signal	extraction
v In	the	resonant	analysis,	fitted	invariant	mass	of	HH-candidate	is	used	for	the	signal	

extraction
◦ Kinematic	constraints	of	45 = 125	89: is	applied	for	/ww and	/zz candidates.
◦ Collinear	approximation	is	considered	for	$ decays.

v In	the	non-resonant	analysis,	the	signal	is	extracted	using	stransverse mass.

vThe	stransverse mass,	4
n|
,	is	a	generalized	version	of	the	transverse	mass.

◦ it	is	originally	designed	for	SUSY	searches,	and	later	proposed	for	// → ##$$

(doi:10.1016/j.physletb.2013.12.011)

v4
n|
	is	defined	as
4
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22

v4
n|
	provides	bigger	discrimination	comparing	to	

4(//),	because,	by	construction,	it	is	bounded	by	
4
>ôö

for	WW̅ background,	but	not	for	the	signal

new results!CMS-PAS-HIG-17-002



           Luca Cadamuro (LLR)                                19/03/2017       Search and prospects for HH production

￭ Non-resonant search excludes 28 times the SM 
□ anomalous λHHH and yt couplings tested 
□ sensitive to the sign of yt 

￭ Resonant production tested up to mX = 900 GeV, 
and interpreted in the hMSSM

11
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￭ Rare but very clean 
final states 
□ large signal 

acceptance 
□ main background 

from continuum jj𝛾𝛾 
(+ℓ) production 
estimated from data 

□ exploit excellent 
resolution on m𝛾𝛾 to 
look for a signal

12

HH→bb𝛾𝛾 / WW𝛾𝛾ATLAS-CONF-2016-071 
ATLAS-CONF-2016-004 
CMS-PAS-HIG-16-032
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￭ Two photons and two jets in the event for bb𝛾𝛾 
￭ One additional lepton for WW𝛾𝛾→jjℓνℓ𝛾𝛾 
￭ Dedicated methods to improve mbb resolution 
￭ Additional categories with 2 and 1 b-tagged 

jets for CMS bb𝛾𝛾 

WW𝛾𝛾bb𝛾𝛾

bb𝛾𝛾
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Results overview

￭ Complementarity in 
different mass ranges 
□ much to gain from a 

combination!
14
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￭ Measurement of σHH and determination of λHHH are one of the main points of 
the physics programme at the HL-LHC (3 ab-1 of data) 

￭ Two alternative approaches to estimate the sensitivity to HH production

15

Future prospects
ATL-PHYS-PUB-2017-001 
ATL-PHYS-PUB-2016-023 
ATL-PHYS-PUB-2015-046 
CMS-DP-2016-064

Combination of final states and of ATLAS and CMS will be crucial to observe HH production

□ parametric simulation of 
upgraded detector response

Diagrams contributing to 

the SM HH production

.

Experimental uncertainty on SM 
HH production

Projection of the sensitivity to the SM ggàHH production at 3 ab-1, based on 13 TeV 

preliminary analyses performed with data collected in 2015. The uncertainty on the signal 

modifier μ=σHH/σSMHH is provided assuming different scenarios on the systematic uncertainties. 
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Figure 3: Expected 95% CL upper limit on the cross-section �(HH ! bb̄��) with 3000 fb�1 of data and neglecting
systematic uncertainties, as a function of the Higgs self-coupling constant � in units of �S M . The ±1� and ±2�
uncertainty bands are shown in green and yellow. The cross-section exclusion limit grows less stringent in the range
3 < �/�S M < 5 due to the shift of the number of expected HH events towards lower values where the cross section
is decreased.

7 Conclusion

This note presents preliminary studies of a search for pair production of SM Higgs bosons decaying into
two photons and two b-jets in the high luminosity LHC context. The expected number of signal and
background events have been estimated from simulated truth level information after applying smearing
functions to mimic the ATLAS detector response in the HL-LHC environment.

Using a cut-based analysis the estimated number of signal events is 9.544 ± 0.029, to be compared to a
background level of 90.9 ± 2.0 events. The combination of these numbers gives an expected significance
of 1.05� for 3000 fb�1. At 95% CL, the Higgs boson self-coupling is expected to be constrained to
�0.8 < �/�S M < 7.7. This is not enough on its own to claim evidence for the observation of Higgs pair
production, or to determine whether the Higgs self-coupling strength is close to its SM expectation. This
channel is expected to be combined with similar measurements for di-Higgs boson production in other
decay channels such as HH ! bb̄bb̄ and HH ! bb̄⌧⌧ and to be part of a combination of ATLAS and
CMS results.

10

bb𝛾𝛾, 
bb𝜏𝜏 and 
bbbb 
studied

□ Best significance is 1.05𝜎 from bb𝛾𝛾

□ extrapolation of results from  
13 TeV, 2.3/2.7 fb-1 to HL-LHC 
(conservative: current results not 
optimal for high luminosity)
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Conclusions
￭ What can we learn from HH production? 
□ search for new physics via resonant production  
□ probe the 5-dimensional structure of the BSM effective Lagrangian 
□ access the shape of the scalar Higgs field via λHHH 

￭ Where do we stand? 
□ several HH final states explored at 13 TeV by ATLAS and CMS 
□ no sign of (B)SM HH production yet: best limit is 28 x SM 

￭ What’s next? 
□ more updated results with full 2016 luminosity 
□ new HH final states and a combination are coming soon 
□ projections show that in the long term (HL-LHC) we can have some sensitivity to 

SM HH, but analyses are evolving quickly, and we expect to do better!

16
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HH is (almost) at reach!

HH→bb𝜏𝜏 or background? 
We expect to have already recorded a few HH events



Additional material
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Effective Lagrangian parametrization
￭ Effective Lagrangian obtained by adding dim-6 operators to the SM 

Lagrangian 
￭ Results in a modification of the SM λHHH and yt couplings and 

introduces three new contact interactions 
□ changing these 5 couplings affect σHH and the HH kinematics 

￭ Analyses are exploring the 5-dimensional space of these couplings 
□ a parametrization of σHH(λHHH, yt, c2, cg, c2g) is used

19

4 2 Phenomenology

Channel BR [%] Exp. # events Exp. # events
L = 5 fb�1 L = 300 fb�1

bbtt 7.3 13.6145 272.29
bbgg 0.26 0.4849 9.698
bbWW ! bbjj`n 7.3 13.6145 272.29
bbWW ! bb`n`n 1.2 2.238 44.76
bbZZ ! bb```` 0.014 0.02611 0.5222
bbZZ ! bbjj`` 0.29 0.54085 10.817
bbZZ ! bbjjjj 1.49 2.77885 55.577

Table 1: Decay channels for the h pair production, relative branching ratio, and the inclusive
expected number of events at 13 TeV for two benchmark integrate luminosity scenari, 5 fb�1

and 300 fb�1. The symbol ` refers to an electron or a muon.

1. New particles responsible for additional loops could in principle be enhanced by a factor78

up to 1000, like in the color-octet scalars model [8].79

2. A modification of the value of the Higgs self coupling [9–11]. There are many models that80

could be in agreement with other Higgs measurement but differ in the value of lhhh.81

An inclusive measurement of shh could not distinguish between this two options. The shape of82

the differential cross section could be in principle sensitive to this effect, but such measurement83

would depend on the number of expected events. Anyway, a deviation of shh from the SM84

prediction would be an indication of the presence of New Physics (NP).85

At Run 2 we do not have sensitivity to perform a direct lSM
hhh measurement but the available86

data allow to constrain BSM models which enhance the non-resonant Higgs boson pair produc-87

tion. The BSM physics can modelled with the Effective Field Theory (EFT) approach adding88

dimension-6 operators to the SM Lagrangian yielding two consequences:89

• anomalous yt and lhhh coupling strengths;90

• additional BMS diagrams enter in the game.91

The different BSM processes contributing to the Higgs boson pair production in pp collisions92

at leading order (LO) are schematized in Figure 2. Three more couplings have been introduced:
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Figure 2: Feynman diagrams of processes that contribute to Higgs boson pair production by
gluon-gluon fusion at leading order. Diagrams corresponds to pure BSM effects.

93

c2, c2g, and cg. To be noted that for linear EFT we identity c2g = cg and c2 = �(3mt/2v)yt. Then94

the combination of cg and yt is fixed by the requirement that single Higgs production must95

agree with the experimentally observed value ( s(gg!h)
s(gg!h)SM

⇠ |cg + yt|2). The couplings c2g, and96

lhhh cannot be probed in single Higgs production, but require measurement of the di-Higgs97

rate and distributions.98

Finally, at LO the gg ! hh process is completely determined by two variables (as the invariant99

mass of the system, mhh and the scattering angle, Hq), all the SM and BSM effects can be de-100

3

2 Phenomenology53

In the Standard Model (SM), after the EWSB, the Higgs potential can be written with the fol-
lowing formula:

V(h) =
1
2

m2
hh2 + lhhhvh3 +

1
4

lhhhhh4 (1)

which is a two parameter model. One of them is the Higgs boson vacuum expectation value
(v), determined by the Fermi constant (GF), v = (

p
2GF)�1/2 ' 246 GeV. The other is the Higgs

boson mass mh that is measured to be 125.09 ± 0.24 GeV in the most precise and recent results
combining the ATLAS and CMS Run-I 4` and gg final states [4]. In the SM, the trilinear Higgs
self-coupling, lhhh is not an independent parameter, but it is a function of v and mh:

lhhh ⌘ lSM
hhh =

m2
h

2v2 ' 0.129. (2)

At LHC lhhh is only accessible and can be measured in Higgs boson pair production, pp ! hh.54

The gluon fusion process is the dominant h pair production process and its cross section is55

about one order of magnitude larger than the second largest process which is vector boson fu-56

sion. Two diagrams are involved in the gg ! hh production (see Figure 1). In both diagrams
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h
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Figure 1: The Higgs boson pair production diagrams contributing to the gluon fusion process
at LO are shown.

57

(box and triangle) the h pair production is mediated by loops of heavy quarks which in the SM58

are mainly top quarks. Bottom quark loops contribute to the total cross section with less than59

1% at LO. The triangle and box diagrams interfere and the interference of the two amplitudes60

depend by the value of lhhh, providing a way to measure it. The gluon fusion process cross sec-61

tion is known at NNLO in QCD using the infinite top quark mass approximation and perform-62

ing the NNLL threshold resummation [5, 6]. The numerical value of the cross section for the63

LHC centre of mass energies of 13 TeV at mh = 125.09 GeV is sSM
hh (13TeV) = 37.9 fb +4.3

�6.0%(scale64

unc.) ±2.1%(PDF unc.) ±3.1%(PDF+aS unc.). It is calculated using the new PDF4LHC rec-65

ommendations for LHC Run-II [7] and the renormalisation and factorisation scales is equal to66

mhh/2.67

Due to the small cross sections decay channels in which one Higgs boson goes to bb should68

be chosen (BR(h !bb) = 0.577). The Table 1 shows some interested decay channels for the h69

pair production, their relative branching ratio, and the inclusive expected number of events at70

13 TeV for two benchmark integrate luminosity (L) scenari, 5 fb�1 and 300 fb�1. The symbol `71

refers to an electron or a muon.72

Phenomenological studies showed that the bbtt channel is one of the most promising, having73

a quite high BR (7.3%) and a relatively small contamination.74

Finally to be underline that many model of physics Beyond the Standard Model (BSM) predict a75

value of production cross section of Higgs boson pair production, shh, that significantly differs76

from SM prediction. In particular, shh can be enhanced for two reasons.77

JHEP04 (2015) 167  ,  LHCHXSWG-2016-001
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￭ Limit set as a function of the 
ratio kλ/kt with kλ = λHHH/λHHHSM 

and kt = yt/ytSM 

￭ The shape of the signal 
depends only on the ratio of 
the couplings for the gg 
fusion mechanisms 
□ under the assumption that the 

other BSM couplings c2, cg, c2g 
are zero

20

HH→bb𝜏𝜏 new results!CMS-PAS-HIG-17-002
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sion. Two diagrams are involved in the gg ! hh production (see Figure 1). In both diagrams

Ytg

g h

h

t
h

g

g h

h

t

λHHH SM LO diagrams

Yt

hhh

Figure 1: The Higgs boson pair production diagrams contributing to the gluon fusion process
at LO are shown.

57

(box and triangle) the h pair production is mediated by loops of heavy quarks which in the SM58

are mainly top quarks. Bottom quark loops contribute to the total cross section with less than59

1% at LO. The triangle and box diagrams interfere and the interference of the two amplitudes60

depend by the value of lhhh, providing a way to measure it. The gluon fusion process cross sec-61

tion is known at NNLO in QCD using the infinite top quark mass approximation and perform-62

ing the NNLL threshold resummation [5, 6]. The numerical value of the cross section for the63

LHC centre of mass energies of 13 TeV at mh = 125.09 GeV is sSM
hh (13TeV) = 37.9 fb +4.3

�6.0%(scale64

unc.) ±2.1%(PDF unc.) ±3.1%(PDF+aS unc.). It is calculated using the new PDF4LHC rec-65

ommendations for LHC Run-II [7] and the renormalisation and factorisation scales is equal to66

mhh/2.67

Due to the small cross sections decay channels in which one Higgs boson goes to bb should68

be chosen (BR(h !bb) = 0.577). The Table 1 shows some interested decay channels for the h69

pair production, their relative branching ratio, and the inclusive expected number of events at70

13 TeV for two benchmark integrate luminosity (L) scenari, 5 fb�1 and 300 fb�1. The symbol `71

refers to an electron or a muon.72

Phenomenological studies showed that the bbtt channel is one of the most promising, having73

a quite high BR (7.3%) and a relatively small contamination.74

Finally to be underline that many model of physics Beyond the Standard Model (BSM) predict a75

value of production cross section of Higgs boson pair production, shh, that significantly differs76

from SM prediction. In particular, shh can be enhanced for two reasons.77
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Figure 1: The selection e�ciency at each stage of the resolved analysis event selection for G⇤KK ! hh ! bb̄bb̄
samples with a range of mG⇤KK

and for a SM non-resonant signal (SMNR).

5.1 Selection

The combined acceptance times e�ciency at di�erent stages of the event selection is shown in Figure 1
for the Bulk RS and SM non-resonant signal models.

The selection begins with the requirement that the event contains at least four b-tagged anti-kt R = 0.4
jets with pT > 30 GeV and |⌘ | < 2.5. The acceptance times e�ciency of this requirement is shown in
Figure 1 as the curve labelled “4 b-tagged jets”. The four jets with the highest b-tagging score are paired
to construct two Higgs boson candidates. The angle between the decay products of the Higgs boson in the
lab frame is dependent on the Lorentz boost of the Higgs boson and thus the invariant mass of the four-jet
system, m4j. Accordingly, pairings of jets into Higgs boson candidates are only accepted if they satisfy
the following requirements, where m4j is expressed in GeV:

360
m4j
� 0.5 < �Rj j,lead <

655
m4j
+ 0.475

235
m4j

< �Rj j,subl <
875
m4j
+ 0.35

9>>>>>=>>>>>;
if m4j < 1250 GeV

0 < �Rj j,lead < 1
0 < �Rj j,subl < 1

9>=>; if m4j > 1250 GeV

In these expressions, �Rj j,lead is the angular distance between jets in the leading Higgs boson candidate
and �Rj j,subl for the sub-leading candidate. The leading Higgs boson candidate is defined to be the

6
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Figure 2: The selection efficiency for simulated X ! H(bb̄)H(bb̄) events (X is a spin-2 RS1 KK-
Graviton) at different stages of the event selection for each mass hypothesis, for the low-mass
region (left) and the medium-mass region (right).
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Figure 3: The mX distribution of signal simulated events (spin-2 RS1 KK-Graviton) after the
event selection criteria for each of mass hypothesis, with and without the correction by the
kinematic constraint to mH.

DR < 1.5. In case of multiple HH candidates in an event, the combination that minimizes the c2

defined in Eq. 1 is chosen. The invariant masses of the the two Higgs boson candidates in each
event, are reported in the two-dimensional plane of Fig. 1. Requiring events to fall within the
SR defined in Fig. 1 completes the signal selection criteria. The cumulative selection efficiency
of these criteria for the graviton signal benchmark is reported in Fig. 2. The reconstructed
invariant mass distributions for the signal with different mass hypotheses are shown in Fig. 3.

￭ 13.3 fb-1 (ATLAS) and 2.3 fb-1 (CMS) analyzed 
￭ Different set of triggers used: require 1 or 2 b-tagged jets (ATLAS) or 3 b-

tagged jets (CMS) 
￭ Different definition of control regions: both use a mass sideband, but ATLAS 

also inverts the b-tag requirement

ATLAS-CONF-2016-049 
CMS-PAS-HIG-16-002 HH→bbbb
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￭ Require two jets with cone 1.0 (ATLAS) / 0.8 (CMS) 
□ trigger: one R=1.0 jet (ATLAS), jets+ HT sums (CMS) 

￭ b-tag criteria applied 
□ ATLAS: categories with 2/3/4 b-tagged track-jets matched 
□ CMS: two separate methods 

1) b-tag on sub-jets + 3-4 tag categorization  
2) double-b tagging MVA algorithm on R=0.8 jet
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￭ Background from data 
□ ATLAS: multijet+tt yield simultaneous fit 

to jet-mass distribution in sideband. 
Multijet shape from data. 

□ CMS: two separate methods 
1) simultaneous functional fit of signal 
and bkg to data  
2) interpolation of b-untagged/b-tagged 
event ratio vs. mJlead into the signal 
region

Boosted HH→bbbbATLAS-CONF-2016-049 
CMS-PAS-B2G-16-008
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Some details on the selections and techniques used in the two analyses

23

HH→bb𝛾𝛾

￭ 2 𝛾 of ET/m𝛾𝛾 > 0.35 (0.25) 
￭ 2 jets of pT > 55 (35) GeV, 

both b-tagged 
￭ signal selection effciency is 5-8% 

(resonant with mX < 400 GeV) and 
10% (non-resonant) 

￭ bb 4-momentum rescaled by mH/mbb 

￭ fit over m𝛾𝛾 for non-resonant search, 
counting experiment in m𝛾𝛾bb window 
in resonant search

￭ 2 𝛾 of ET > 30 (20) GeV and  
ET/m𝛾𝛾 > 0.33 (0.25) 

￭ 2 jets of pT > 25 GeV, 1 and 2 b-tag 
categories 

￭ signal selection efficiency is ~20% for 
mX < 400 GeV 

￭ multivariate regression method to 
estimate mbb 

￭ improved 4-body mass resolution 
using mX = mjj𝛾𝛾 - mjj + 125 GeV 

￭ 2D fit over (m𝛾𝛾, mbb) in a window 
around mbb𝛾𝛾 (resonant search) and 
for mbb𝛾𝛾 > 350 GeV (non-resonant 
search)

ATLAS-CONF-2016-004 
CMS-PAS-HIG-16-032


