Displaced and Prompt Signals in NMGMSB

by

Ben Allanach (University of Cambridge)

- NMGMSB Scenario
- Recast of LHC Limits
- Run II Prospects
- ATLAS displaced vertex plus jets

Motivation

Gauge mediation is nice because of *predictivity in soft* breaking terms and desirable flavour properties. However, when embedded in the MSSM, it typically predicts m_h too low. Also, $B/\mu \sim F/M$ is too large by 1/loop factor.

A mGMSB scan¹ (10 TeV $\leq \Lambda \leq 1000$ TeV, $1 \leq M/\Lambda \leq 10^{11}$, $1 \leq \tan \beta \leq 60$, $\sqrt{m_{\tilde{t}_1}}m_{\tilde{t}_2} < 3$ TeV) yields

 $m_h < 118 \,\,{\rm GeV}.$

Q: Can the NMSSM help?

¹Arbey, Battaglia, Djouadi, Mahmoudi, PLB 708 (2012) 162, arXiv:1112.3028

Higgs Properties

For $m_{h_1} \sim 98$ GeV, we explain a small 2σ excess in the LEP II Higgs search, which has a reduced coupling to the Z^0 boson.

Stop masses can be lighter and still get $m_{h_2} \sim 125$ GeV because of the singlet-Higgs mixing. $\{\xi, \lambda, \tilde{m}\}$ fixed by setting $\{m_{h_1}, m_{h_2}, \theta\}$. Leaves M. For numerical analysis, we use NMSSMTools, checked with SOFTSUSY3.4.1.

Coupling to Z, $\xi = g/g_{SM}$

A Light Pseudoscalar/Singlino

EWSB $\Rightarrow \kappa \ll \lambda$ and large $\tan \beta \sim \lambda/\kappa$. Small A_{κ} and $\kappa \Rightarrow$ light pseudoscalar

$$m_{a_1} \sim \sqrt{\frac{45\sqrt{8\xi}}{32g_3}} m_{h_1} \in [20, \ 40] \text{ GeV}.$$

$$m_{\tilde{S}}^2 pprox m_{h_1}^2 + rac{1}{3}m_{a_1}^2 \sim 100$$
 GeV.
LSP is gravitino, NLSP is dominantly singlino.

NLSP Decays

At the end of decay chains, $\tilde{N}_1 \rightarrow a_1 \tilde{G} \rightarrow b \bar{b} \tilde{G}$.

$$c\tau_{\tilde{N}_1} \approx 2.5 \,\mathrm{cm} \, \left(\frac{100\,\mathrm{GeV}}{M_{\tilde{N}_1}}\right)^5 \left(\frac{M}{10^6\,\mathrm{GeV}}\right)^2 \left(\frac{\tilde{m}}{\mathrm{TeV}}\right)^2$$

Hence, we have displaced decays, but for $M > 10^{10}$ GeV, it decays outside of the detector.

LHC Detection

Simulate² with SOFTSUSY3.6.1 for ATLAS validation, PYTHIA8.2, FASTJET3.1.3, SDECAY1.5, SLHA2, PROSPINO2.1. ²BCA, Badziak, Cottin, Desai, Hugonie, Ziegler, EPJ C76 (2016) 482, arXiv:1606.03099 $\xi = 0.01, \lambda = .009, M = 1.4 \times 10^{6}$ GeV, $\tilde{m} = 863$ GeV, $\tan \beta = 28.8, c\tau = 99$ mm

Detector Response

Jet response: $p_T(j)$ is smeared by a gaussian with 20% resolution of energy for $E_j < 50$ GeV falling linearly to 10% up to 100 GeV and then a flat 10%. A further scale correction of 1% is applied for $|\eta_j| < 2$, 3% for $\eta \ge 2$.

Eg cuts for jets+ $\vec{p}_{T}^{\text{miss}}$ ATLAS at 13 TeV 4jt-13: $\vec{p}_{T}^{\text{miss}} > 200$ GeV, $p_{T}(j_{i})/\text{GeV} > \{200, 100, 100, 100\}$. $\Delta \phi(j_{1,2,3}, \vec{p}_{T}^{\text{miss}}) > 0.4$, $\Delta \phi(j_{4}, \vec{p}_{T}^{\text{miss}}) > 0.2$, $\vec{p}_{T}^{\text{miss}}/m_{eff}(N_{j}) > 0.2$, $m_{eff} > 2.2$ TeV.

Gluino Bounds

Run II Reach $\sigma_{95}^{obs} \propto 1/\sqrt{\mathcal{L}}$

Displaced Vertices

We need to model the detector response³.

DV jets	4 or 5 or 6 jets with $ \eta < 2.8$ and $p_T > 90, 65, 55$ GeV, each.		
DV reconstruction	DV made from tracks with $p_T > 1$ GeV, $ \eta < 2.5$ and $ d_0 > 2$ mm, satisfying tracking efficiency given by equation 2 Vertices within 1 mm are merged.		
DV fiducial	DV within 4 mm $< r_{DV} < 300$ mm and $ z_{DV} < 300$ mm.		
DV material	No DV in regions near beampipe or within pixel layers: Discard tracks with $r_{DV}/\text{mm} \in \{[25, 38], [45, 60], [85, 95], [120, 130]\}.$		
$\overline{N_{\mathrm{trk}}}$	DV track multiplicity ≥ 5 .		
$\overline{m_{DV}}$	DV mass > 10 GeV.		

We fit a form of track efficiency to 3 ATLAS benchmarks: 2 GGM, RPV.

³DV plus jets: ATLAS, PRD92 (2015) 072004

$$\varepsilon_{\rm trk} = 0.5 \times (1 - \exp(-p_T/[4.0 \text{ GeV}]))$$

 $\times \exp(-z/[270 \text{ mm}])$
 $\times \max(-0.0022 \times r_{\perp}/[1 \text{ mm}] + 0.8, 0),$

	$\sqrt{s} = 8 \text{ TeV}$		$\sqrt{s} = 13 \text{ TeV}$	
	N	ϵ [%]	N	ϵ [%]
All events	100000	100.	100000	100.
DV jets	96963	97.	98306	98.3
DV reconstruction	16542	17.1	16542	16.8
DV fiducial	16459	99.5	16460	99.5
DV material	16146	98.1	16210	98.5
$N_{\rm trk}$	584	3.6	544	3.4
$m_{\rm DV}$	4	0.7	3	0.6

Table 3 Numbers of simulated events N and relative efficiencies ϵ (i.e. defined with respect to the previous cut) for our NMGMSB model (P0 benchmark) with $c\tau_{\tilde{N}_1} = 99$ mm at $\sqrt{s} = 8$ TeV and $\sqrt{s} = 13$ TeV for the ATLAS selection of cuts in Table 2.

Why so bad?

Topology of $b\bar{b}\tilde{G}$ involves further displacements from *B* mesons, each with less than 5 tracks. ATLAS only merges them if tracks start within 1 mm of each other. Benchmark: displaced track $\epsilon = 0.06$, average number of track from displaced *b* is $18.1 \Rightarrow 18.1 \times 0.06 = 1.2$ visible tracks per displaced *b*.

Higher m_{a_1} means collimated daughters and b-hadron vertices are more likely to be close to each other.

	$\sqrt{s} = 8 \text{ TeV}$		$\sqrt{s} = 13 \text{ TeV}$	
	N	$\epsilon~[\%]$	N	$\epsilon~[\%]$
All events	100000	100.	100000	100.
Prompt $p_T^{\text{miss}*}$	91709	91.7	87737	87.7
Prompt jets*	72075	78.6	84178	95.9
Prompt $\Delta \phi(\text{jet}_{1,2,3}, \mathbf{p}_T^{\text{miss}})_{min}^*$	49095	68.1	57261	68.
Prompt $\Delta \phi(\operatorname{jet}_{i>3}, \mathbf{p}_T^{\operatorname{miss}})_{min}^*$	27315	55.6	33832	59.1
Prompt $p_T^{\text{miss}}/m_{\text{eff}}(N_j)^*$	6670	24.4	18409	54.4
Prompt $m_{\rm eff}$ (incl.)*	6636	99.5	16848	91.5
DV jets	6636	100.	16848	100.
DV reconstruction ^{\dagger}	1524	23.	3850	22.9
DV fiducial	1516	99.5	3825	99.4
DV material	1494	98.5	3750	98.
$N_{ m trk} \ge 2$	1494	100.	3750	100.
$m_{\rm DV} > 5 { m GeV}$	88	5.9	265	7.1

Summary

- NMGMSB has nice Higgs properties with a relatively light SUSY spectrum.
- One gets prompt jets, $\vec{p}_{\mathrm{T}}^{\mathrm{miss}}$ and DV signatures
- Currently, $\Rightarrow m_{\tilde{g}} > 1080$ GeV in prompt searches. Can reach $m_{\tilde{g}} \sim 2$ TeV with 300 fb⁻¹ at 13 TeV
- Displaced signatures have very low efficiencies due to: light a_1 and B-meson decays
- One can increase efficiencies by loosening displaced cuts while imposing stricter prompt cuts.
- The future is *bright* for displaced vertex searches, since they aren't background limited: $S \propto \mathcal{L}$

NMGMSB

 Z_3 NMSSM superpotential

$$W_N = \lambda N H_d H_u - \frac{k}{3} N^3$$

forbids bare μ term. Effective μ and B terms now generated by low energy dynamics: $\mu = \lambda \langle N \rangle$, $B = \lambda \langle F_N \rangle \sim \langle N \rangle^2$, evading B/μ problem.

However, in NMGMSB⁴: $\langle N \rangle$ is too small unless we have $m_N^2 < 0$ and large A_λ , A_κ . Thus, electroweak symmetry does not break correctly.

⁴Dine, Nelson, PRD48 (1993) 1277, arXiv:hep-ph/9303230

DGS Model

To fix this, DGS proposed⁵ a NMGMSB model with $5_i \oplus \overline{5}_i = \Phi_i + \overline{\Phi}_i$ messengers of SU(5).

$$W_{\Phi} = \kappa X \sum_{i=1}^{2} \bar{\Phi}_i \Phi_i + \xi N \bar{\Phi}_i \Phi_i + W_N,$$

where $X = M + \theta^2 F$ is a background non-dynamical field.

Once the messengers are integrated out, this yields one-loop A_{λ} , A_k and two-loop m_N^2 , yielding successful SUSY breaking.

⁵Delgado, Giudice, Slavich, PLB 653 (2007) 424, arXiv:0706.3873

Figure 2: Mass of the lightest CP-even Higgs boson h_1 in the $\xi_U - \lambda(M_S)$ plane, for $M = 10^{13}$ GeV and $F/M = 1.72 \times 10^5$ GeV.

Remember

Details

Post Higgs Discovery ⁶

 $m_h^2 = M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta + m_{mix}^2 + m_{loop}^2.$

 m_{mix} comes from mixing terms with other two CP-even Higgs states in the NMSSM. Can reach up to $m_h^2 - m_{loop}^2 \approx (99 \ {\rm GeV})^2$ for large $\tan\beta$ if the mixing contribution is large and positive \Rightarrow the singlet state is lighter than the SM-like Higgs.

⁶BCA, Badziak, Hugonie, Ziegler, PRD 92 (2015) 015006, arXiv:1502.05836.

Maximising Tree m_{h_2}

Fixes $m_{h_1} \approx 94$ GeV and the singlet-Higgs mixing $\cos \theta \approx 0.88$. Neglecting RG effects and expanding EWSB conditions in terms of large $\langle N \rangle$,

$$\xi \sim \frac{m_{h_1}}{4\sqrt{2}g_3\tilde{m}} \sim .01, \qquad \lambda \sim \frac{m_{h_2}^2 - m_{h_1}^2}{4v\tilde{m}} \sin 2\theta \sim .01,$$

where $\tilde{m} = F/(16\pi^2 M)$.

Small $\lambda, \xi \Rightarrow$ small $|A_{\lambda}| = |A_{\kappa}|/3 = \tilde{m}(2\xi_D^2 + \xi_T^2).$

Messenger scale M

$$m_{3/2} = 38 \text{ eV}\left(rac{ ilde{m}}{ extsf{TeV}}
ight) \left(rac{ extsf{M}}{10^6 \text{ GeV}}
ight).$$

- $M \sim 10^8$ GeV: $\tilde{\tau}_R$ is NNLSP.
- $10^8 \stackrel{<}{\sim} M/$ GeV $\stackrel{<}{\sim} 10^9$: either $\tilde{\tau}_R$ or \tilde{B} .
- $10^9 \text{ GeV} \stackrel{<}{\sim} M$: \tilde{B} NNLSP.

Lifetimes

Viable Low⁷ $m_{\tilde{g}}$

⁷Barr, Liu, arXiv:1605.09502