

Studies of diboson production at LHC

Senka Đurić (University of Wisconsin-Madison)

On behalf of the CMS and ATLAS Collaborations

Rencontres de Moriond

So far New Physics has not been directly seen at the LHC

- \rightarrow Precision measurements are more important then ever !
 - Need to understand the perturbative higher order corrections
 - Understand the nature of electroweak symmetry breaking (EWSB)
 - Looking for indirect signatures of New Physics above directly reachable energy

Diboson measurements

Diboson cross section at LHC

One of the consequences of non-Abelian gauge theories are the self-interactions of gauge bosons Diboson measurements are probing weak boson self-interactions

Moriond EW 2017

Several measurements with 13 TeV data already available !

Senka Đurić

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined

10

8

12

√s (TeV)

4

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SM/

Inclusive diboson cross section measurement

Senka Đurić

Moriond EW 2017

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SM/

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined

10

8

12

14 √s (TeV)

5

Senka Đurić

Moriond EW 2017

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SM/

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined

√s (TeV)

6

Due to large ttbar background WW measurement is performed applying a jet veto (0- or 1-jet events only)

- Veto enhances the contribution of the soft gluons to the pT(WW) distribution
- Jet veto efficiency is sensitive to higher-order QCD corrections

 \rightarrow Large theoretical uncertainty!

Expecting sizable effect from NNLO QCD and NLO QED in high pT/ mass of the diboson system

Jet related observables allow direct probe of higher order corrections

- Measurements of cross section in jet bins (exclusive)
- Differential measurements -

Senka Đurić

Moriond EW 2017

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SM/

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined

New differential measurements: zz

EWK production: Vector boson scattering

Tag jet

- V(V)+2jets production is dominated by $O(\alpha_s^2)$ QCD processes
 - evaluated from data in control region or from simultaneous fit
- **EWK V(V)+2jets production** is essential to probe the nature of the EWSB
 - V₁V₁ scattering linked to the mechanism responsible for the EWSB
 - characteristic signature: two high p_{τ} jets in the forward-backward region with large rapidity separation and low hadronic activity in-between
 - First observation (evidance) of EWK V(V) production with 8 TeV data
 - First observation of EWK VV right around the corner (with 13 TeV data)?

EWK measurements: V(V)+2jets		ATLAS (8 TeV)	CMS (8 TeV)	
Diboson (statistic dominated)	W [±] (lv)W [±] (lv)	PRL 113, 141803, arxiv:1611.02428 Evidence: EWK signal significance 3.6σ (exp 2.8σ)	PRL 114 (2015) 051801 EWK signal significance 1.9σ (exp 2.9σ)	
	W(Ιν)γ	-	CMS-PAS-SMP-14-011 EWK signal significance 2.7σ (exp 1.5σ)	
	Ζ(II)γ	STDM-2015-21 EWK signal significance 2.0σ (exp 1.8σ)	CMS-PAS-SMP-14-018 Evidence: EWK signal significance 3.0σ (exp 2.1σ)	
Single boson (systematic dominated)	Z(II)	JHEP 04 (2014) 031 Observation: EWK signal significance ~5σ	EPJC 75 (2015) 66 Observation: EWK signal significance ~5σ	
	W(lv)	arXiv:1703.04362 Observation: EWK signal significance >5σ	JHEP 11 (2016) 147 Evidence: EWK signal significance ~4σ	

New EWK production measurements: W, Zy

EWK(+QCD) W+2j measurement:

- Unlike QCD+EWK production for EWK production higher masses ($M_{ii} > 1.5 \text{ TeV}$) predictions give a harder spectrum than observed in the data
 - Signature of NLO electroweak corrections?
- Dominant uncertainty is systematic: jet energy scale and resolution, PDF

EWK Zy+2j measurement:

- Z(II) and Z(vv) channels included
- Cross section is extracted using a likelihood fit over the centrality of the Zy two-body system ($\zeta_{7\nu}$)
- Measurement statistics dominated

with additional operators and anomalous parameters, measure parameters:

EFT:
$$\mathcal{L}_{SM} \longrightarrow \mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{n=1}^{\infty} \sum_{i} \underbrace{\frac{c_{i}^{(n)}}{\Lambda^{n}}}_{i} \mathcal{O}_{i}^{(n+4)}$$

Anomalous couplings: variety of measurements

Measurements performed in numerous production channels:

- inclusive diboson measurements
- EWK production offers a complementary test of anomalous couplings

Limiting factor: observed statistics in the tail (primary), systematic and statistical uncertainty on the signal/bkg model (secondary)

No significant deviation of data from SM expectation is observed

Anomalous couplings result in an increase of cross section at high energies

invariant mass of the diboson system and the boson p_{τ} are particularly sensitive

Anomalous couplings: results

LHC and LEP probing at different energies. Limits on parameters (without the use of form factors) comparable to LEP results.

- Anomalous coupling sensitivity depends on the diboson channel .
- Sensitivity is defined by the reach of diboson system invariant mass
 - \rightarrow Best sensitivity from channels with larger BR (semileptonic decays in boosted topology)
 - \rightarrow Large gain in sensitivity with increase of \sqrt{s}

larch 2017	CMS ATLAS	Channel	Limits	∫ <i>L</i> dt	ſs
٤Ŷ	AILASTCINS	ZZ (4I,2I2v)	[-1.5e-02, 1.5e-02]	4.6 fb ⁻¹	7 TeV
1 ₄	· • •	ZZ (41,212v)	[-3.8e-03, 3.8e-03]	20.3 fb ⁻¹	8 TeV
	H	ZZ (4I)	[-5.0e-03, 5.0e-03]	19.6 fb ⁻¹	8 TeV
	⊢	ZZ (2l2v)	[-3.6e-03, 3.2e-03]	24.7 fb ⁻¹	7,8 TeV
		ZZ (4I,2I2v)	[-3.0e-03, 2.6e-03]	24.7 fb ⁻¹	7,8 TeV
	H-1 (ZZ (4l)	[-1.3e-03, 1.3e-03]	35.9 fb ⁻¹	13 TeV
	· · · · · · · · · · · · · · · · · · ·	ZZ (4I,2I2v)	[-1.0e-02, 1.0e-02]	9.6 fb ⁻¹	7 TeV
ε Ζ		ZZ (4I,2I2v)	[-1.3e-02, 1.3e-02]	4.6 fb ⁻¹	7 TeV
1 ₄		ZZ (4I,2I2v)	[-3.3e-03, 3.2e-03]	20.3 fb ⁻¹	8 TeV
	⊢−−−− 4	ZZ (4I)	[-4.0e-03, 4.0e-03]	19.6 fb ⁻¹	8 TeV
	——————————————————————————————————————	ZZ (2l2v)	[-2.7e-03, 3.2e-03]	24.7 fb ⁻¹	7,8 TeV
	⊢−−− 1	ZZ (4I,2I2v)	[-2.1e-03, 2.6e-03]	24.7 fb ⁻¹	7,8 TeV
		ZZ (4I)	[-1.2e-03, 1.1e-03]	35.9 fb ⁻¹	13 TeV
		ZZ (4I,2I2v)	[-8.7e-03, 9.1e-03]	9.6 fb ⁻¹	7 TeV
fγ	· · · · · · · · · · · · · · · · · · ·	ZZ (4I,2I2v)	[-1.6e-02, 1.5e-02]	4.6 fb ⁻¹	7 TeV
5	H	ZZ (4I,2I2v)	[-3.8e-03, 3.8e-03]	20.3 fb ⁻¹	8 TeV
	F	ZZ (4I)	[-5.0e-03, 5.0e-03]	19.6 fb ⁻¹	8 TeV
	H	ZZ(2l2v)	[-3.3e-03, 3.6e-03]	24.7 fb ⁻¹	7,8 TeV
	⊢ ⊿	ZZ(4I,2I2v)	[-2.6e-03, 2.7e-03]	24.7 fb ⁻¹	7,8 TeV
	H (T	ZZ (4I)	[-1.2e-03, 1.3e-03]	35.9 fb ⁻¹	13 TeV
	· · · · · · · · · · · · · · · · · · ·	ZZ (4I,2I2v)	[-1.1e-02, 1.1e-02]	9.6 fb ⁻¹	7 TeV
fΖ		ZZ (4I,2I2v)	[-1.3e-02, 1.3e-02]	4.6 fb ⁻¹	7 TeV
'5	⊢−−− 1	ZZ (4I,2I2v)	[-3.3e-03, 3.3e-03]	20.3 fb ⁻¹	8 TeV
	H	ZZ (4I)	[-4.0e-03, 4.0e-03]	19.6 fb ⁻¹	8 TeV
	⊢−−−	ZZ (2l2v)	[-2.9e-03, 3.0e-03]	24.7 fb ⁻¹	7,8 TeV
	H	ZZ (4I,2I2v)	[-2.2e-03, 2.3e-03]	24.7 fb ⁻¹	7,8 TeV
		ZZ (4I)	[-1.0e-03, 1.2e-03]	35.9 fb ⁻¹	13 TeV
		ZZ (4I,2I2∨)	[-9.1e-03, 8.9e-03]	9.6 fb ⁻¹	7 TeV
-0.0	2 0	0.02	0.04		0.06
			aTGC Lir	nits @9	5% C.L
Mo	priond EW 2017				

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC

Recent measuremen with 13 TeV data

The present and the future of diboson physics

LHC Run2 is ongoing, so far ~40 fb⁻¹ of data collected by ATLAS and CMS experiments

- All inclusive (differential) diboson measurements are already systematics (statistics) dominated
 - Work is ongoing to decrease experimental uncertainties
 - Measurements are pushing for more precise theoretical calculations (NNLO or 3NLO QCD, NLO EWK, ...)
- We expect to have the sensitivity for first observation of the diboson EWK production with 2016/2017 data
- Significant increase of sensitivity for indirect search for New Physics (aTGC, aQGC)
- Await for vast of new diboson results in next few months!
- Continue to probe the nature of EWSB !

LHC Run2 is ongoing, so far ~40 fb⁻¹ of data collected by ATLAS and CMS experiments

All inclusive (differential) dihoson measurements are already systematics (statistics) dominate

- We expec 2016/201
- \geq

Backup

Diboson inclusive measurements: overview

	ATL	AS	CMS		
	8 TeV	13 TeV	8 TeV	13 TeV	
Z->41	PRL 112, 231806 (2014)	-	-	PLB 763 (2016) 280,	
ZZ->4I	PLB 753 (2016) 552-572, JHEP01 099 (2017) Cross section, differential, aTGC	PRL 116, 101801 (2016) Cross section	PLB 740 (2015) 250, CMS-PAS-SMP-15-012 Cross section, differential and aTGC measurement	CMS-PAS-SMP-16-017 Cross section, differential and aTGC	
ZZ->2 2v	JHEP01, 099 (2017) Cross section, differential, aTGC	-	EPJC 75 (2015) 511 Cross section and aTGC measurement	-	
Ζγ->ΙΙγ	PRD 93, 112002 (2016)		JHEP 04 (2015) 164 Cross section and aTGC measurement	-	
Ζγ->ννγ	measurement	measurement		CMS-PAS-SMP-16-004 Cross section	
WW->lvlv	JHEP 09 (2016) 029 (WW+0jet) Cross section, differential and aTGC measurement PLB 763 (2016) 114 (WW+1jet) Cross section measurement	arXiv:1702.04519 Cross section	EPJC 76 (2016) 401 (WW+0- or 1-jet) Cross section, differential and aTGC measurement	CMS-PAS-SMP-16-006 Cross section	
WZ->3lv	PRD 93, 092004 (2016) Cross section, differential, upper limit on EWK WZ, aTGC, aQGC measurement	PLB 762 (2016) 1 (3.2 fb-1) Cross section, differential (Njets) ATLAS-CONF-2016-043 (13.3 fb-1) Cross section, differential and aTGC!	CMS-SMP-14-014, arXiv:1609.05721	arXiv:1607.06943 (CMS-PAS-SMP-16-002) (2.3 fb-1) Cross section	
WV->lvjj	-	-	-	CMS-PAS-SMP-16-012 aTGC measurement	

- Large cross section of multiboson production at LHC in pp collisions
- Clean signature and small branching ratio for vector bosons decaying leptonicaly
- Not clean signature but large branching ratio for hadronic decays

EWK results: overview

VBS measurements (VV+2jets)		ATLAS	CMS
8 TeV	EWK W [±] W [±] ->lvlv	PRL 113, 141803 Cross section (EWK, EWK+QCD) and aQGC measurement Evidence: EWK signal significance 3.6σ (exp 2.8σ) arxiv:1611.02428 Updated aQGC limits	PRL 114 (2015) 051801 Cross section (EWK+QCD) and aQGC measurement EWK signal significance 1.9σ (exp 2.9σ)
	ΕWK Wγ ->Ινγ	-	CMS-PAS-SMP-14-011 Cross section (EWK, EWK+QCD) and aQGC measurement EWK signal significance 2.7σ (exp 1.5σ)
	EWK Zy ->lly	STDM-2015-21 Cross section (EWK, EWK+QCD), aQGC measurement EWK signal significance 2.0σ (exp 1.8σ)	CMS-PAS-SMP-14-018 Cross section (EWK, EWK+QCD) and aQGC measurement Evidence: EWK signal significance 3.0σ (exp 2.1σ)
	EWK WZ ->IvIIPhys. Rev. D 93, 092004 (2016) Cross section (EWK, EWK+QCD) measurement		PRL 114 (2015) 051801 Cross section (EWK+QCD) measurement
	EWK WV->lvjj	PRD 95 (2017) 032001 aQGC measurement	-

VBF measurements (V+2jets)		ATLAS	CMS	
	EWK Z(II)	JHEP 04 (2014) 031 Cross section (EWK) and aTGC measurement Observation : EWK signal significance ~5σ ()	EPJC 75 (2015) 66 Cross section (EWK) measurement Observation: EWK signal significance ~5σ	
8 TeV	EWK W(lv)	arXiv:1703.04362 Cross section (EWK, EWK+QCD), differential (EWK, EWK+QCD), aTGC measurement Observation : EWK signal significance >5 σ	CMS-PAS-SMP-13-012, arXiv:1607.06975 Cross section (EWK) measurement Evidence: EWK signal significance ~4σ	

+ some measurements also with 7 TeV !

Moriond EW 2017

CMS and ATLAS experiments

CMS and ATLAS experiments

Hadronic Calorimeters

LHC performance

CMS Integrated Luminosity, pp

- Wonderful performance of LHC accelerator in past years
- Large amount of data collected by ATLAS and CMS experiments of proton-proton collisions at a centerof-mass energies of Vs = 7, 8 and 13 TeV
- Huge amount of measurements performed, including milestone discovery of Higgs boson !

aQGC couplings: variety of measurements

0.6

0.8

April 2016

 $f_{M,0}/\Lambda^4$

 $f_{M,1}/\Lambda^4$

 $f_{M,2}/\Lambda^4$

 $f_{M,3}/\Lambda^4$

 $\frac{f_{M,4}^{}/\Lambda^4}{f_{M,5}^{}/\Lambda^4}$

f., , / \^

 α_{4}

aQGC Limits @95% C.L. [TeV-4]

aTGC couplings: variety of measurements

LHC and LEP probing at different energies. Limits on parameters (without the use of form factors) comparable to LEP results.

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC

ZZ normalized differential with full 2016 data

25

New differential measurements: ZZ

qq->41: NLO in QCD with Powheg/aMC@NLO MG5

scaled to NNLO (k-factor=1.1)

qg->41: LO

gg->ZZ: LO with MCFM

EWK ZZ production in association with two jets is generated with PHANTOM

gg->H->ZZ: NLO with POWHEG 2.0

scaled to NLO (k-factor=1.7)

scaled to NNLO (k-factor=1.7)

ZZ normalized differential with full 2016 data

Table 4: Fiducial definitions for the reported cross sections. The common requirements are applied for both measurements.

Cross section measurement Fiducial requirements						
Common requirements $p_{ m T}^{\ell_1}>20{ m GeV}$, $p_{ m T}^{\ell_2}>10{ m GeV}$, $p_{ m T}^{\ell_{3,4}}>5{ m GeV}$,						
	$ \eta^\ell <$ 2.5, m_{ℓ^+}	$_{\ell^-}>4{ m GeV}$ ((any opposit	e-sign same-flavor pair)		
$Z \rightarrow 4\ell$	$m_{Z_1} > 40 \text{GeV}$					
	$80 < m_{4\ell} < 10$	0 GeV				
$ZZ \rightarrow 4\ell$	$60 < m_{Z_1}, m_{Z_2}$	< 120 GeV				
	Uncertainty	$Z\to 4\ell$	$ZZ\to 4\ell$			
-	Lepton efficiency	6–10%	2–6%			
	Trigger efficiency	2–4%	2%			
	MC statistics	1–2%	0.5%			
	Background	0.6–1.3%	0.5 - 1%			
	Pileup	1–2%	1%			
-	PDF	1%	1%			
	QCD Scales	1%	1%			
-	Integrated luminosity	2.6%	2.6%			

 $\sigma_{\rm fid}({\rm pp} \to {\rm Z} \to 4\ell) = 29.7 \pm 1.4 \,({\rm stat})^{+2.0}_{-1.8} \,({\rm syst}) \pm 0.8 \,({\rm lumi}) \,{\rm fb},$ $\sigma_{\rm fid}({\rm pp} \to {\rm ZZ} \to 4\ell) = 42.2 \pm 1.4 \,({\rm stat})^{+1.6}_{-1.5} \,({\rm syst}) \pm 1.1 \,({\rm lumi}) \,{\rm fb}.$

 $\sigma({\rm pp}
ightarrow {\rm ZZ}) = 17.8 \pm 0.6 \, {\rm (stat)}^{+0.7}_{-0.6} \, {\rm (syst)} \pm 0.4 \, {\rm (theo)} \pm 0.5 \, {\rm (lumi)} \, {\rm pb}.$

VV EWK w/o scattering

EWK production via vector boson scattering

Probing the nature of the Electroweak Symmetry Breaking (EWSB)!

Moriond EW 2017

Anomalous couplings: results

LHC and LEP probing at different energies. Limits on parameters (without the use of form factors) comparable to LEP results.

Senka Đurić

Moriond FW 2017

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC

Recent measureme

with 13 TeV da

aTGC couplings: variety of measurements

- Full 2016 data will provide significantly stronger limits than our 8 TeV results
- Combination of anomalous coupling limits using inclusive diboson measurements and Higgs measurements (and ATLAS and CMS combination)
 ♦ Improvement in sensitivity

Anomalous couplings: results

LHC and LEP probing at different energies. Limits on parameters (without the use of form factors) comparable to LEP results.

Future prospects under discussion:

Self-Consistency Check

- perturbativity of physical expansion
- deriving limits with extra cut on √s < M_{cutoff}
 → limits in the (c,M) plane

<u>Combination of anomalous coupling limits with</u> <u>Higgs measurements</u>

 \rightarrow Improvement in sensitivity

Limits are set on $c_i^{(n)}/\Lambda^n \rightarrow probing$ energies of $\Lambda^n = c_i^{(n)}/limit$ In the limit of strong coupling ($c_i = 4\pi$) \rightarrow limit on Λ up to 2 TeV !

Zγ VBS

Figure 1: Feynman diagrams of Electroweak $Z\gamma jj$ production involving VBS subprocesses (bottom left) or non-VBS subprocesses (top left) and of QCD $Z\gamma jj$ production with gluon exchange (top right) or radiation (bottom right).

- small constructive interference occurs between QCD and EWK quark scattering productions
- interference contribution is predicted from Sherpa to be less than 10% of the EWK cross-section in the search region (m_{ji}> greater than 500 GeV) with a decreasing trend as a function of m_{ji}
- interference is treated as an uncertainty in the measurements

main background for Z(II)γ is Z+jets (jet misidentified as a photon)

- Estimated using the fake rate method (based on control regions populated by events passing all selection criteria but with the candidate photon failing some of the identification criteria and/or the isolation requirement)
 - uncertainty is dominated by the systematic uncertainty due to the correlation between photon identification and isolation requirements

dominant background for $Z(vv)\gamma$ is $W(lv)\gamma$ +jets production (lepton is neither reconstructed nor detected)

• estimated using the Sherpa MC samples with normalization determined with data

A centrality observable ζ is defined to quantify the relative position in pseudo-rapidity of a physics object with respect to the two leading jets (j_1 and j_2):

$$\zeta \equiv \left| \frac{\eta - \bar{\eta}_{jj}}{\Delta \eta_{jj}} \right| \quad \text{with} \quad \bar{\eta}_{jj} = \frac{\eta_{j_1} + \eta_{j_2}}{2}, \quad \Delta \eta_{jj} = \eta_{j_1} - \eta_{j_2}, \tag{1}$$

EWK Wjj production at the LHC:

QCD Wjj production at the LHC:

Moriond EW 2017

Source	Uncertain	ty in $\mu_{\rm EW}$
	$7 { m TeV}$	$8 { m TeV}$
Statistical		
Signal region	0.094	0.028
Control region	0.127	0.044
Experimental		
Jet energy scale (η intercalibration)	0.124	0.053
Jet energy scale and resolution (other)	0.096	0.059
Luminosity	0.018	0.019
Lepton and $E_{\rm T}^{\rm miss}$ reconstruction	0.021	0.012
Multijet background	0.064	0.019
Theoretical		
MC statistics (signal region)	0.027	0.026
MC statistics (control region)	0.029	0.019
EW Wjj (scale and parton shower)	0.012	0.031
QCD W_{jj} (scale and parton shower)	0.043	0.018
Interference (EW and QCD Wjj)	0.037	0.032
Parton distribution functions	0.053	0.052
Other background cross sections	0.002	0.002
EW Wjj cross section	0.076	0.061
Total	0.26	0.14

W+2j renormalization and factorization scale variations and parton-shower modelling

- affect the acceptance of the jet centrality requirement
- The interference uncertainty is estimated by including the Sherpa leadingorder interference model as part of the background W+2j process
- a 0.076 (0.061) uncertainty in the signal cross section at 7 (8) TeV due to higher-order QCD corrections and non-perturbative modelling is estimated using scale and parton-shower variations
 - affecting the measurement of µEW but not the extracted cross sections

W VBF

- SM prediction of the dijet mass distribution receives significant uncertainties from the experimental jet energy scale and resolution
- These uncertainties are constrained with a correction to the predicted distribution derived using data in a control region where the signal contribution is suppressed

- measurement is performed with an extended joint binned likelihood fit of the M_{jj} distribution for the normalization factors of the QCD and EWK W+2j Powheg +Pythia8 predictions
- The interference between the processes is not included in the fit, and is instead taken as an uncertainty based on SM predictions.
- uncertainty in the shape of the QCD W+2j distribution dominates the measurement, but is reduced by using the forward-lepton control region to correct the modelling of the Mjj shape

WW CMS 8TeV

Source	Uncertainty (%)
Statistical uncertainty	1.5
Lepton efficiency	3.8
Lepton momentum scale	0.5
Jet energy scale	1.7
$E_{\rm T}^{\rm miss}$ resolution	0.7
tt+tW normalization	2.2
W +jets normalization	1.3
$Z/\gamma^* \rightarrow \ell^+ \ell^-$ normalization	0.6
$Z/\gamma^* ightarrow au^+ au^-$ normalization	n 0.2
W γ normalization	0.3
$W\gamma^*$ normalization	0.4
VV normalization	3.0
$H \rightarrow W^+W^-$ normalization	0.8
Jet counting theory model	4.3
PDFs	1.2
MC statistical uncertainty	0.9
Integrated luminosity	2.6
Total uncertainty	7.9

• jet counting model uncertainty includes the renormalization and factorization scales, and underlying event uncertainties

Due ages	zero-jet ca	itegory	one-jet category		
Process	Different-flavor	Same-flavor	Different-flavor	Same-flavor	
$q\overline{q} \rightarrow W^+W^-$	3516 ± 271	1390 ± 109	1113 ± 137	386 ± 49	
${ m gg} ightarrow { m W}^+ { m W}^-$	162 ± 50	91 ± 28	62 ± 19	27 ± 9	
W^+W^-	3678 ± 276	1481 ± 113	1174 ± 139	413 ± 50	
ZZ + WZ	84 ± 10	89 ± 11	86 ± 4	42 ± 2	
VVV	33 ± 17	17 ± 9	28 ± 14	14 ± 7	
top quark (B _{t-tag})	522 ± 83	248 ± 26	1398 ± 156	562 ± 128	
$Z/\gamma^* \to \ell^+ \ell^-$	38 ± 4	141 ± 63	136 ± 14	65 ± 33	
$\mathrm{W}\gamma^*$	54 ± 22	12 ± 5	18 ± 8	3 ± 2	
$\mathrm{W}\gamma$	54 ± 20	20 ± 8	36 ± 14	9 ± 6	
W + jets(e)	189 ± 68	46 ± 17	114 ± 41	16 ± 6	
$W + jets(\mu)$	81 ± 40	19 ± 9	63 ± 30	17 ± 8	
Higgs boson	125 ± 25	53 ± 11	75 ± 22	22 ± 7	
Total bkg.	1179 ± 123	643 ± 73	1954 ± 168	749 ± 133	
W^+W^- + total bkg.	4857 ± 302	2124 ± 134	3128 ± 217	1162 ± 142	
Data	4847	2233	3114	1198	

WW CMS 13TeV

EPJC 76 (2016) 401

Uncertainty source	Propagation to cross section (%)
Experimental uncertainties	4.9
QCD scales and higher order effects	3.2
PDFs	0.4
Underlying event and parton shower	3.7
Non-prompt normalization	3.0
Top-quark normalization	2.0
$W\gamma^*$ normalization	0.3
Simulation and data control regions sample size	1.4
Total systematic uncertainty	7.4
Total statistical uncertainty	5.0
Luminosity	3.0
Total uncertainty	9.5

arXiv:1507.02565

- reweghting the spectrum obtained using POWHEG to the analytical prediction obtained using the pTresummation at next-to-next-to-leading logarithm precision
 - uncertainties in the theoretical modeling of the signal efficiency are estimated by varying indepedently the resummation, the factorization, and the renormalization scales in the analytical calculation of the *pT*WW spectrum
 - The uncertainty in the efficiency of the gg → W W component is determined by the variation of the renormalization and factorization scales in the theoretical calculation of this process. The propagation of these uncertainties in the signal acceptance, together with the effect of scale variations in the background simulations, yield an uncertainty of 3.2% in the measurement of the W+W- cross section.
- Experimental uncertainties: lepton reconstruction and identification efficiencies, efficiency to discriminate jets from b-quarks and jets from light quarks, uncertainties in the electron and muon energy scales, jet energy scale, and *E*miss energy scale and resolution

- The qq̄ → WW production cross section is known to O(α2s) (NNLO), the non-resonant gg sub-process is known to O(α3s) (NLO), and the resonant gg → H → W W cross section is calculated to O(α5s) (N3LO) taking into account the H → W W branching fraction (nNNLO+H)
- alternative prediction, the calculation for the nNNLO+H combination corrected by the acceptance A calculated using the MC event generator POWHEG-BOX v2 + PYTHIA v8.210 for the qq⁻ and resonant gg → H → WW processes, and SHERPA v2.1.1 for the non-resonant gg process. In this calculation the acceptance factor is estimated to be A = (16.4 ± 0.9) % where the uncertainty includes the parton shower modelling (taken as the difference between PYTHIA v8.210 and HERWIG++ showers), PDF uncertainty (estimated as the largest difference between the CT10 NLO eigenvector uncertainty band and the MSTW2008nlo and NNPDF3.0 PDF central values), scale uncertainty associated with the jet veto requirement and the residual renormalisation and factorisation scale uncertainty (estimated by varying the two scales independently by factors of 2 and 0.5)
- The nNNLO+H prediction agrees within uncertainties with the experimental cross-section measurement in the fiducial phase space.

Senka Đurić

Moriond EW 2017

CMS-SMP-14-014, arXiv:1609.05721

Source	$\sqrt{s} = 7 \mathrm{TeV}$			$\sqrt{s} = 8 \mathrm{TeV}$				
Source		eeµ	μμе	μμμ	eee	eeµ	μμε	μμμ
Renorm. and fact. scales	1.3	1.3	1.3	1.3	3.0	3.0	3.0	3.0
PDFs	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Pileup	0.3	0.5	1.0	0.6	0.2	0.4	0.3	0.2
Lepton and trigger efficiency	2.9	2.7	2.0	1.4	3.4	2.5	2.5	3.2
Muon momentum scale		0.6	0.4	1.1		0.5	0.8	1.3
Electron energy scale	1.9	0.8	1.2		1.4	0.8	0.8	
$E_{\rm T}^{\rm miss}$	3.7	3.4	4.3	3.7	1.5	1.5	1.6	1.2
ZZ cross section	0.5	0.9	0.6	0.9	0.1	0.1	0.1	0.1
$Z\gamma$ cross section	0.0	0.0	0.1	0.0	0.2	0.0	0.2	0.0
tt and Z+jets	2.7	6.5	6.3	6.0	4.6	7.2	6.1	7.7
Other simulated backgrounds	0.2	0.2	0.9	0.2	1.0	1.1	1.1	1.0
Total systematic uncertainty	6.1	7.8	8.1	7.2	7.0	8.6	7.7	9.2
Statistical uncertainty	13.5	13.9	13.1	11.0	7.7	7.2	6.4	5.2
Integrated luminosity uncertainty	2.2	2.2	2.2	2.2	2.6	2.6	2.6	2.6

Sample	eee	eeµ	μμе	μμμ	Total			
$\sqrt{s} = 8 \mathrm{TeV}$; $\mathcal{L} = 19.6 \mathrm{fb}^{-1}$								
Non-prompt leptons	18.4 ± 12.7	32.0 ± 21.0	54.4 ± 33.0	62.4 ± 37.7	167.1 ± 55.8			
ZZ	2.1 ± 0.3	2.4 ± 0.4	3.2 ± 0.5	4.7 ± 0.7	12.3 ± 1.0			
$Z\gamma$	3.4 ± 1.3	0.4 ± 0.4	5.2 ± 1.8	0	9.1 ± 2.2			
$\mathrm{W}\gamma^*$	0	0	0	2.8 ± 1.0	2.8 ± 1.0			
VVV	6.7 ± 2.2	8.7 ± 2.8	11.6 ± 3.8	14.8 ± 5.1	41.9 ± 7.3			
Total background (N_{bkg})	30.6 ± 13.0	43.5 ± 21.2	74.4 ± 33.3	84.7 ± 38.1	233.2 ± 56.3			
WZ	211.1 ± 1.6	262.1 ± 1.8	346.7 ± 2.1	447.8 ± 2.4	1267.7 ± 4.0			
Total expected	241.6 ± 13.1	305.7 ± 21.3	421.0 ± 33.3	532.4 ± 38.2	1500.8 ± 56.5			
Data $(N_{\rm obs})$	258	298	435	568	1559			

WZ CMS