A Natural extra-dimensional origin for the LHCb anomalies

Giuliano Panico IFAE Barcelona

52nd Rencontres de Moriond – 22/3/2017

Hints of new physics in B decays

A coherent pattern of deviations in B-meson physics seems to emerge from the flavour measurements

♦ hints of lepton universality violation in clean observable R_K

$$R_K = \frac{\text{BR}(B^+ \to K^+ \mu^+ \mu^-)}{\text{BR}(B^+ \to K^+ e^+ e^-)} = 0.745^{+0.090}_{-0.074} \pm 0.036$$

ullet consistent deviations in other process related to the $b \to s \mu \mu$ transition

A simple pattern?

Compatibility with the data can be significantly improved if sizeable contributions to O_9 (possibly correlated to O_{10}) are present

[Descotes-Genon, Matias, Virto '13, '15]

$$\Delta C_9 \in [-1.67, -0.39]$$

$$\Delta C_9 = -\Delta C_{10} \in [-1.23, -0.18]$$

$$\Delta C_9 = -\Delta C_{10} \in [-1.23, -0.18]$$

see talk by J. Matias

Many BSM models have been proposed to explain the anomalies

see talks by A. Crivellin and O. Sumensari

- leptoquarks [Kosnik '12, Hiller, Schmaltz '14; Sahoo, Mohanta '15; Becirevic, Fajfer, Kosnik '15; ...]
- heavy Z' vectors

[Altmannshofer et al '13; Gauld, Goertz, Haisch '13; Altmannshofer et al '14; Crivellin et al. '15; Sierra, Straub, Vicente '15; Celis, Fuentes-Martin, Jung, Serodio '15; Falkowski, Nardecchia, Ziegler '15; Descotes-Genon, Hofer, Matias, Virto '15; ...]

Looking for a bigger picture

Sizeable contributions are needed to reproduce the anomalies

generic feature of new physics: new states with a mass ~TeV

Could it be first hint of a bigger picture?

intriguing possibility:

relate the anomalies to the Naturalness Problem

In this talk: explore this possibility in the context of scenarios with a composite Higgs and new stongly-coupled dynamics

Model-independent overview

Composite Higgs: General features

New strongly-coupled dynamics at a scale $~\Lambda \sim {
m TeV}$

- ullet composite Higgs boson H
 - ullet EW scale naturally of order Λ ullet solution of the **Naturalness Problem**
- ullet new massive resonances $m \sim {
 m TeV}$
 - heavy vectors ρ (same quantum numbers as SM gauge fields)
 - fermionic partners $\,\psi\,$ (mixed with SM fermions: partial compositeness)

The $b \to s\ell\ell$ transition

see also [Niehoff, Strangl, Straub '15]

Vector resonances generate contributions to the O_9 and O_{10} operators

$$C_{9,10} \sim \frac{\sqrt{2}\pi}{G_F \alpha_{em}} \frac{g_{\rho}^2}{m_{\rho}^2} \lambda_b \lambda_{\mu} \simeq 100 \lambda_b \lambda_{\mu} \left(\frac{g_{\rho} \cdot 1 \,\text{TeV}}{m_{\rho}} \right)^2$$

ullet the B anomalies can be easily reproduced if the b and the μ have some amount of compositeness

$$\lambda_b \times \lambda_\mu \sim 0.01$$

$$(m_{\rho} \sim few \text{ TeV}, \quad g_{\rho} \sim few)$$

- electron almost elementary: violation of lepton universality
- possible pattern: left-handed compositeness

$$\lambda_{b_L}$$
, $\lambda_{\mu_L} \sim 0.1$

$$\lambda_{b_L}, \lambda_{\mu_L} \sim 0.1 \qquad \lambda_{b_R}, \lambda_{\mu_R} \ll 0.1$$

$$C_9 \simeq -C_{10}$$

Implications for flavour and EW physics

The vector resonances give rise to other unavoidable effects

distortion of the Z couplings

$$\Delta F = 2$$
 transitions

Distortions of the Z couplings

After EW symmetry breaking the Z mixes with the vector resonances

the mixing gives rise to distortions of the SM gauge couplings

$$\frac{\delta g_{Zff}}{g_{Zff}^{\rm SM}} \sim \lambda_f \frac{m_Z^2}{m_\rho^2} \simeq 0.01 \,\lambda_f \left(\frac{1 \, {\rm TeV}}{m_\rho}\right)^2$$

from the current constraints one finds an upper bound on the amount of b and μ compositeness

$$\frac{\delta g_{Zff}}{g_{Zff}^{\rm SM}} \lesssim few \times 10^{-3} \quad \longrightarrow \quad \lambda_b \,, \lambda_\mu \lesssim 0.2$$

→ constraints close to values needed to explain B anomalies

$\Delta F = 2$ transitions

Vector resonances also mediate $\Delta F=2$ effective interactions

$$\mathcal{O}_{\Delta F=2} \sim \lambda_b^2 \frac{g_\rho^2}{m_\rho^2} \left(V_{3i}^* V_{3j} \right)^2 \left(\overline{d}_i \, \gamma^\mu \, d_j \right) \left(\overline{d}_i \, \gamma_\mu \, d_j \right)$$

current flavor bounds imply the constraint

$$\lambda_b^2 \frac{g_\rho^2}{m_\rho^2} \lesssim \frac{1}{(5 \, \text{TeV})^2} \longrightarrow \lambda_b \lesssim 0.2$$

→ constraints close to values needed to explain B anomalies

An explicit model

B-anomalies from RS

A modified RS scenario

An explicit realization can be obtained in an extra-dimensional scenario a la Randall-Sundrum

$$ds^{2} = e^{-2A(y)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + dy^{2}$$

- → Higgs is a composite state
 - localized towards the IR brane

- ullet fermion compositeness controlled by the bulk mass c_f
 - almost elementary $\ c_f > 0.5$ (UV localized)
 - sizeable compositeness $c_f \lesssim 0.5$ (IR localized)

(eg. 1st gen., b_R, μ_R)

(eg. top, b_L, μ_L)

EW bounds

EW correction to oblique S,T parameters under control by small deformation of the metric close to IR

typical mass of the lightest gauge KK's

$$m_{\rho}^{(1)} \sim 2 - 3 \text{ TeV}$$

a light dilaton could also be present

$$m_{dil} \sim 0.1 - 3 \text{ TeV}$$

→ still allowed due to reduced couplings to SM

Reproducing the B anomalies

- ◆ the B anomalies can be easily reproduced
- ullet compelling scenario with b and μ localization fixed
 - correlated effects in $\Delta F=2\,$ transitions and $\,$ Z couplings close to experimental bounds

Additional signatures

- + Heavy gluon KK modes: expected to have a mass comparable with the EW gauge resonances
 - copiously produced at LHC: current bounds $m_{KK} \gtrsim 2~{
 m TeV}$
 - natural region of parameter space testable soon
- + EW gauge KK modes: enhanced couplings to muons
 - harder to produce, possibly visible if light quarks are not too elementary
- Fermionic KK modes
 - typical mass in the few TeV region
 - quark KK partners testable in future LHC runs

Conclusions

Conclusions

Anomalies in B physics seem to follow a coherent pattern, possibly pointing to violation of lepton universality

Models with a composite Higgs and new strong dynamics can explain the anomalies and link them to the Naturalness Problem

- generic features:
 - sizeable muon and bottom compositeness
 - ullet related **deviations** in Z couplings and $\Delta F=2$ transitions
 - heavy resonances at the TeV scale testable at the LHC (heavy gluons, heavy vectors, fermionic partners)
- predictive explicit implementations in extra-dimensions

Additional developments:

 $R_{D^{(*)}}$ anomalies can also be explained by tau compositeness

Backup

Breaking lepton universality

SM gauge fields (KK zero modes) have flat profiles

flavor-universal couplings (up to small corrections after EWSB)

Massive KK modes have a non-trivial profile: IR localized

stronger couplings with composite fields: universality violation

