

Multi-detector results from the Double Chooz experiment

A.Meregaglia (IPHC) On Behalf of the Double Chooz Collaboration

Moriond - 24th March 2017

INTRODUCTION (I)

• Reactor oscillation experiments aim at the measurement of θ_{13} through the observation of $\overline{v}_e \rightarrow \overline{v}_e$ transition according to the oscillation probability:

 The use of two detectors allows to measure the flux before and after the oscillation to cancel out the associated systematics.

- The advantages of this measurement with respect to long baseline oscillation experiments is a **clean measurement** of θ_{13} since:
 - 1. It is a disappearance experiment, therefore insensitive to the value of the δ -CP phase.
 - 2. It has a short baseline (order of I km) and it is therefore insensitive to matter effects.
 - 3. The dependence on Δm_{21}^2 is very weak : O ($\Delta m_{21}^2/\Delta m_{31}^2$).

A.Meregaglia (IPHC)

INTRODUCTION (2)

- The reactor measurement is complementary with respect to the long baseline oscillation experiments.
- The combination of the two results in hints of maximal CP violation.

Double Chooz OVERVIEW

NEUTRINO DETECTION

• Neutrinos are observed via Inverse Beta Decay (IBD):

$$\overline{\nu}_{e}$$
 + p \rightarrow e⁺ + n

- The signal signature is given by a **twofold coincidence**:
 - Prompt photons from e⁺ ionisation and annihilation (1-8 MeV).
 - Delayed photons from n capture on Gadolinium (~8 MeV) or H (2.2 MeV).
 - 3. Time correlation: $\Delta t \sim 30 \ \mu s$ for Gd and $\Delta t \sim 200 \ \mu s$ for H.
 - 4. Space correlation (< Im).
- The energy spectrum is a convolution of flux and cross section (threshold at 1.8 MeV).
- The prompt energy is related to $\overline{\nu_e}$ energy:

 $E_{prompt} = E_v - T_n - 0.8 MeV$

• The survival probability depends on E_v therefore we have a measurement of θ_{13} using rate and spectral deformation.

DETECTOR DESIGN

Outer Veto: plastic scintillator strips

Chimney: deployment of radioactive source for calibration in the v-Target and γ -Catcher.

v-Target: 10.3 m^3 scintillator (PXE based) doped with lg/l of Gd in an acrylic vessel (8 mm)

 γ -Catcher: 22.5 m³ scintillator (PXE based) in an acrylic vessel (12 mm)

Buffer: 100 m³ of mineral oil in a stainless steel vessel (3 mm) viewed by 390 PMTs (10 inches)

Inner Veto: 90 m³ of scintillator (LAB based) in a steel vessel (10 mm) equipped with 78 PMTs (8 inches)

Shielding: about 250 t steel shielding (150 mm) (FD) / I m water (ND)

BACKGROUND

Double Chooz MILESTONES (single detector)

Multidetector results:

- First multidetector results on n+Gd released at Moriond 2016.
- New results with higher statistics and larger neutrino target released in September 2016.

STATISTICS: AN ISSUE?

- The result presented at Moriond 2016 were dominated by the statistic.
- The projection of the uncertainty on θ_{13} shows that statistics is the limiting factor for about 10 years.

IBD (Gd)

IBD

target

target: ~8t

(smallest θ_{13} target)

IBD (Gd+H+C)

(largest θ_{13} single detector target)

• Exploiting the Gamma Catcher as neutrino target, Double Chooz is no longer dominated by the statistics.

RATES

SELECTION

- The signal selection follows the same strategy as for Gd analysis but the background rejection is more demanding.
- A Neural Network (ANN), based on ΔR , Δt and on the delayed energy, is used to reduce the accidental background.

Neutrino candidates selection

Prompt Energy	I - 20 MeV	
Delayed Energy	1.3 -10 MeV	
Δt	0.5 - 800 µs	
ΔR	< 1.2 m	
Isolation window (prompt)	[-800, +900] µs	
Δ t after a muon	> 250 µs	

BACKGROUND REJECTION

 In the IBD selection there are background contributions which are efficiently removed by the use of several vetoes.

BG after all vetoes [0.5,20] MeV

	FD	ND
IBD prediction (day ⁻¹)	~110	~780
⁹ Li (day⁻¹)	~2.5	~11
Correlatet BG (day ⁻¹)	~2.5	~21
Accidental BG (day ⁻¹)	~4	~3

	OV veto					
	\Rightarrow fast neutron, stop- μ	Cut	Information used	BG removed		
FV veto μ \Rightarrow chimney stop- μ	µ veto	1.25ms veto after µ	µ, cosmogenic			
	Multiplicity	e ⁺ /n signals isolated	multiple-n			
PLi n		FV veto	vertex reconst. likelihood	chimney stop-µ		
		IV veto	IV – ID signal coincidence	fast n, stop-μ, γ scattering		
		OV veto	OV activity	fast n, stop-µ		
		Li veto	Li-likelihood	⁹ Li, ¹² B		
γ	LN cut	PMT hit pattern & time	light emission from PMT			
IV veto		(CPS veto)	chimney likelihood	stop-µ		
\Rightarrow fast neutron, stop-μ, γ scattering						
$\begin{array}{c c} \textbf{Li veto} \\ \Rightarrow \text{ cosmogenic } ^9\text{Li} \end{array}$						
	10 ² 10 10 ⁻¹	DC-IV-IBD(Gd+H) 481(SD)+ PRELIMINARY (CERN seminary CERN seminary 50 60 70 80 Visible Energy	ND - IBD(Gd ND - IBD(Gd ND - IBD(Gd Rejected ev DeltaR CPS DeltaT OVT IVTp DBJz_ND FuncV_ND IVTd ANN_ND LiLike	I+H) (no cut) I+H) (all cuts applied) ents		

ND PERFORMANCE

- The ND response is very similar to the FD one and fulfils the expectations.
- For example in the Cf calibration campaign (same source for the two detector) we obtained a relative response linearity ≤ 0.3% within [1,10] MeV.
- However we had a leak issue: some Gd in Gamma Catcher and some scintillator in Buffer.
- Gd in the GC is **not an issue** in the Gd+H analysis (self compensating).
- The scintillator in the Buffer is an issue for stopping muons which are already a factor of 100 higher in ND with respect to FD.

ENERGY SPECTRA

FD-I ~ 40k IBD

FIT AND RESULT

Best fit ratio

 The fit is done comparing FD-I, FD-II and ND Observation / No-oscillation prediction Observation / No-oscillation predictior FDI Data FDII Data 1.3 1.3 No oscillation est fit: sin ²20₁₃ = 0.119 Best fit: sin ²2θ₁₃ = 0.119 Correlation of systematics errors are include • 1.2 Single detector systematic uncertainty 1.2 Single detector syst ressed systematic uncertain pressed systematic uncertainty 1.1 1.1 BG rate and shapes are estimated by data ٠ FDI F 1.0 1.0 information is used) 0 0.9 0.8 0.8 Observation / No-oscillation prediction **-**Far + Near (818.18 and 257.959 live days) Far + Near (818.18 and 257.959 live days **FDI Data** 1.3 0.7 0.7 5 **Best fit ratio** 1 2 6 8 2 1 5 6 1.2 Visible Energy (MeV) Visible Energy (MeV) Observation / No-oscillation prediction Observation / No-oscillation predictior FDI Data prediction FDI Dat 1.3 1.3 1.3 1.1 lo oscillation scillation lest fit: sin ²20₁₃ = 0.119 Best fit: sin ²20₁₃ = 0.119 1.2 tector systematic uncertainty 1.2 detector systematic uncertainty 1.2 sed systematic uncertainty oscillation 1.0 1.1 1.1 1.1 ND 0.9 FDI 1.0 1.0 1.0 Observation / No-0.9 0.9 0.9 0.8 0.8 0.8 0.8 Far + Near (818.18 and 257.959 live days) Far + N Far + Near (818.18 and 257.959 live days) 0.7 0.7 0.7 0.7 1 2 з 5 6 7 8 5 6 4 2 2 3 4 7 8 1 2016/9/16 10 Visible Energy (MeV) Visible Energy (MeV) visible ⊏nergy (iviev) oscillation prediction FDI Data 1.3 No oscillation Best fit: sin ²20₁₃ = 0.119 1.2 6.2/114)1.1 ND 1.0 +++++ ⁺⊥ **Estimation ND Fit output ND** Background Fit output FD **Estimation FD** ⁹Li (β-n) 2.59 ± 0.61 2.55 ± 0.23 11.11 ± 2.96 14.4 ± 1.2 Correlated 20.77 ± 0.43 20.85 ± 0.31 2.54 ± 0.10 2.51 ± 0.05 2016/9/16 VISIDIE Energy (MeV)

CROSS CHECK

- As a cross check we performed a data-data fit using ND and FD-II.
- This is not affected by the MC spectrum distortion between [4,6] MeV.
- The obtained result is in agreement with the one from the data/MC fit using all the available statistics.

EXTRAPOLATION

- With the multi detector analysis (Gd+H) the statistics is no more a limiting factor.
- The largest systematics comes from detection systematics: the uncertainty on the proton number in the GC limits the sensitivity to 0.76% whereas if we consider only the neutrino target the detection systematics is 0.3%.
- With a reduction on the proton number uncertainty we could reach a sensitivity ≤ 0.01 (work in progress).

CONCLUSIONS

- Double Chooz has released a measurement of mixing angle θ_{13} exploiting the multi detector analysis: $\sin^2(2\theta_{13})=0.119 \pm 0.016$.
- The use of all neutron captured (Gd+H) allowed for an increase of statistics (statistical error reduce by 40%) which was the limiting factor.
- The new analysis allowed to correctly take into account the (tiny) leak between Target and Gamma Catcher.
- The reactor flux uncertainty is strongly suppressed thanks to the almost iso-flux geometry (<0.1%).
- We are today dominated by the proton number uncertainty: work is in progress to reduce it and a final sensitivity better than 0.01 on $sin^2(2\theta_{13})$ could be achieved.

THE COLLABORATION

• France:

CEA/IRFU SPP & SPhN & SEDI & SIS & SENAC Saclay, APC Paris, Subatech Nantes, IPHC Strasbourg

• Germany:

MPIK Heidelberg, TU München, EKU Tübingen, RWTH Aachen

• Japan:

Tohoku U., Niigata U., Tokyo Metropolitan U., Tokyo Inst.Tech., Kobe U., Tohoku Gakuin U., Hiroshima I Inst.Tech.

Russia:

RAS, Kurchatov Institute (Moscow)

Spain:

CIEMAT Madrid

• USA:

Alabama, ANL, Chicago, Columbia, Drexel, Kansas State, MIT, Notre Dame, Tennessee, IIT, U.C. Davis, Virginia Tech

• Brazil:

CBPF, UNICAMP, UFABC