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•

INTRODUCTION (1)

• The advantages of this measurement with respect to long baseline oscillation experiments is a clean 
measurement of  θ13 since:

1. It is a disappearance experiment, therefore insensitive to the value of the δ-CP phase.

2. It has a short baseline (order of 1 km) and it is therefore insensitive to matter effects.

3. The dependence on Δm2
21 is very weak : O (Δm2

21/Δm2
31).

• Reactor oscillation experiments aim at the measurement of θ13 through the observation of νe →  νe  
transition according to the oscillation probability:
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P (να → νβ;U) = P (ν̄α → ν̄β;U∗)

sin2(∆m2
ijL/4E)

∆m2
ij ≡ m2

i − m2
j

2
√

2GF ne = 7.56 × 10−5eV 2ρ(g/cm3)

νe +71 Ga →71 Ge + e−

νe +37 Cl →37 Ar + e−

νe + e− → νe + e−

P (νe → νe) = 1 − sin2 2θ12 sin2(1.27
∆m2

12L

E
)

P (νe → νe) = 1 −
1

2
sin2 2θ12

νe + d → p + p + e−

νx + d → p + n + νx

νx + e− → νx + e−

n +2 H → γ +3 H

n +35 Cl → γ +36 Cl

ν̄e + p → e+ + n

n + p →2 H + γ

n + Gd → Gd∗ → Gd + γ

P (να → νx) = 1 − P (να → να)

P (ν̄e → ν̄e) ≃ 1 − sin2(2θ13) sin2
(∆m2

32L

4E

)
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• The use of two detectors allows 
to measure the flux before and 
after the oscillation to cancel out 
the associated systematics.

Δm2  
Dominated

δm2  
Dominated

Near 
Detector

Far 
Detector

sin2(2θ12)sin2(2θ13)
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INTRODUCTION (2)
• The reactor measurement is complementary with respect to the long baseline oscillation 

experiments.

• The combination of the two results in hints of maximal CP violation.
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Marrone et al. - Neutrino2016
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Double Chooz OVERVIEW
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Far detector
Distance: ∼1050 m

Overburden: ∼300 m.w.e. hill topology
Data taking since April 2011

Near detector
Distance: ∼400 m

Overburden: ∼120 m.w.e. flat topology
Data taking since December 2014 2 reactors

Pth=4.25 GW each
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• Neutrinos are observed via Inverse Beta Decay (IBD):

• The signal signature is given by a twofold coincidence:

1. Prompt photons from e+ ionisation and annihilation (1-8 
MeV).

2. Delayed photons from n capture on Gadolinium (∼8 MeV) or 
H (2.2 MeV).

3. Time correlation: Δt ∼30 µs for Gd and Δt ∼200 µs for H.

4.  Space correlation (< 1m).

NEUTRINO DETECTION
νe + p → e+ + n
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• The energy spectrum is a convolution of flux and cross section 
(threshold at 1.8 MeV).

• The prompt energy is related to νe energy: 

• The survival probability depends on Eν therefore we have a 
measurement of θ13 using rate and spectral deformation.

Eprompt=Eν-Tn-0.8 MeV
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DETECTOR DESIGN
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γ-Catcher:: 22.5 m3 scintillator (PXE based) in 
an acrylic vessel (12 mm)

Buffer: 100 m3 of mineral oil in a stainless 
steel vessel (3 mm) viewed by 390 PMTs (10 
inches)

Inner Veto: 90 m3 of scintillator (LAB based) 
in a steel vessel (10 mm) equipped with 78 
PMTs (8 inches)

Shielding: about 250 t steel shielding (150 
mm) (FD) / 1 m water (ND)

Chimney: deployment of radioactive source 
for calibration in the ν-Target and γ-Catcher.

Outer Veto: plastic scintillator strips

ν-Target: 10.3 m3 scintillator (PXE based) 
doped with 1g/l of Gd in an acrylic vessel (8 
mm)
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P

Accidental BG

BACKGROUND
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Backgrounds

9Li and 8He

Correlated background:

Fast neutrons

Stopping muons

Accidental background:

•

 

Random coincidence (uncorrelated):

–

 

Radioactivity from PMTs, rock, 

materials, …

–

 

Neutron-like signal produced by high 

energy depositions (β-emitters, n-

 capture, ...).
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Gd

Cosmic μ

γ

Gd n

Radioactivity from materials, 
PMTs, surrounding rock 

(208Tl).

Correlated BG
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Backgrounds
9Li and 8He

Correlated background:

Fast neutrons

Stopping muons:

•

 

Muons decaying in the detector.

•

 

Acceptance hole in chimney.

•

 

Prompt: muon

 

track.

•

 

Delayed: Michel electron.

Accidental background
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Recoil p

Gd

Cosmic μ

Michel e-
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Backgrounds
9Li and 8He

Correlated background:

Fast neutrons:

•

 

Nearby muon-spallation.

•

 

Prompt: proton recoil

•

 

Delayed: neutron capture

Stopping muons

Accidental background
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Cosmic μ

Recoil p

Gd n

n

n
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Backgrounds
9Li and 8He:

•

 

Produced by muon-spallation. 

•

 

β-n emitters, mimic the antineutrino signal.

•

 

Long lifetime ~250 ms. Veto not feasible.

Correlated background

Fast neutrons

Stopping muons

Accidental background
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9Li, 8He

Cosmic μ

12C

Neutrons from cosmic µ 
spallation gives recoil 
protons (low energy).

Fast neutrons Stopping µ Cosmogenics

P
ro

m
pt

D
el

ay

Neutrons from cosmic µ 
spallation captured on Gd/H, 
or γ like prompt fake signal in 

case of H analysis.

Neutrons from cosmic µ 
spallation captured on 
Gd/H, or γ like prompt 
fake signal in case of H 

analysis.

Cosmic µ entering from 
the chimney.

Michel electrons.

Electrons from 9Li/8He    
β + n decays.

Neutrons from 9Li/8He    
β + n decays captured on 

Gd/H.
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θ13
 

compilationDouble Chooz MILESTONES (single detector)

Phys.Rev.Lett. 108 (2012) 131801 

First indication of non-zero θ13 

and rate+shape analysis

Phys.Lett. B723 (2013) 66-70

First n-H capture analysis

Phys.Lett. B735 (2014) 51-56 

First (and only) Reactor Rate 
Modulation (RRM) analysis

JHEP 1410 (2014) 86

First publication on “5 MeV 
distortion”

Multidetector results:

• First multidetector results on n+Gd released at Moriond 2016.

• New results with higher statistics and larger neutrino target released in September 2016.
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STATISTICS: AN ISSUE?
• The result presented at Moriond 2016 were dominated by the statistic.

• The projection of the uncertainty on θ13 shows that statistics is the limiting factor for about 10 years.
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PRELIMINARY 
DC @ Moriond2016

±0.030

±0.018 (<1 years)

±0.010 (~5x years)

Double Chooz results 

sin2(2θ13)=(0.111±0.018)!

sin2(2θ13)=(0.090±0.030)!FD 

FD+ND 

C. Palomares (CIEMAT)       NNN16 Beijin 8 November 4, 2016 

target: ~30t 
 (largest θ13 single detector target)

• Exploiting the Gamma Catcher as 
neutrino target, Double Chooz is no 
longer dominated by the statistics.

target: ~8t 
(smallest θ13 target)

IBD (Gd) IBD (Gd+H+C)

IBD
target

IBD
target
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RATES
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1 Reactor

2 Reactors

50 events per day at FD 
σstat = 0.56%

1 Reactor

2 Reactors

140 events per day at FD 
σstat = 0.35%

IBD (Gd)

IBD (Gd+H)
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SELECTION

• The signal selection follows the same strategy as 
for Gd analysis but the background rejection is 
more demanding.

• A Neural Network (ANN), based on ΔR, Δt and 
on the delayed energy, is used to reduce the 
accidental background.
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Prompt Energy 1 - 20 MeV
Delayed Energy 1.3 -10 MeV

Δt 0.5 - 800 µs
ΔR < 1.2 m

Isolation window (prompt) [-800, +900] µs
Δt after a muon > 1250 µs

Neutrino candidates selection

ND delayed ND prompt
Before ANN After ANN Before ANN After ANN
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BACKGROUND REJECTION
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• In the IBD selection there are 
background contributions which are 
efficiently removed by the use of 
several vetoes.

IBD Selection: Background vetoes�
Cut� Information used� BG removed�

µ veto� 1.25ms veto after µ� µ,  cosmogenic�

Multiplicity� e+/n signals isolated� multiple-n�

FV veto� vertex reconst. 
likelihood�

chimney stop-µ�

IV veto� IV – ID signal 
coincidence�

fast n, stop-µ, 
γ scattering�

OV veto� OV activity� fast n, stop-µ�

Li veto� Li-likelihood� 9Li, 12B�

LN cut� PMT hit  
pattern & time�

light emission 
from PMT�

(CPS veto)� chimney likelihood stop-µ 

FV#veto!
⇒!chimney!stop.μ�

OV#veto!
⇒!fast!neutron,!stop.μ�

Li#veto!
⇒!cosmogenic!9Li�

γ�

n�
9Li�

μ�

IV#veto!
⇒!fast!neutron,!!
stop.μ,!γ!scattering�

	
��C. Palomares (CIEMAT)       NNN16 Beijin November 4, 2016 

FD ND

IBD prediction 
(day-1)

∼110 ∼780

9Li (day-1) ∼2.5 ∼11

Correlatet BG 
(day-1)

∼2.5 ∼21

Accidental BG 
(day-1)

∼4 ∼3

BG after all vetoes [0.5,20] MeV
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ND PERFORMANCE
• The ND response is very similar to the FD one and fulfils the 

expectations. 

• For example in the Cf calibration campaign (same source for the 
two detector) we obtained a relative response linearity ≤  0.3% 
within [1,10] MeV.

• However we had a leak issue: some Gd in Gamma Catcher and 
some scintillator in Buffer.

• Gd in the GC is not an issue in the Gd+H analysis (self 
compensating).

• The scintillator in the Buffer is an issue for stopping muons which 
are already a factor of 100 higher in ND with respect to FD.

13

Not an issue 
after 

background 
rejection
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ENERGY SPECTRA
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FD-I
∼ 40k IBD

FD-II
∼ 40k IBD

ND
∼ 200k IBD
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FIT AND RESULT
• The fit is done comparing FD-I, FD-II and ND data to the Monte Carlo (prediction + BG).

• Correlation of systematics errors are included in the fit as well as energy non linearities.

• BG rate and shapes are estimated by data (Li BG rate is not constrained in the fit and only shape 
information is used)

15

ND FD-I FD-IIResults 
FD-I FD-II ND 

sin2(2θ13 ) = 0.119 ± 0.016  (stat.+syst.) (χ2/dof = 236.2/114) 

Background Estimation FD Fit output FD Estimation ND Fit output ND 
9Li (β-n) 2.59 ± 0.61 2.55 ± 0.23 11.11 ± 2.96 14.4 ± 1.2 

Correlated 2.54 ± 0.10 2.51 ± 0.05 20.77 ± 0.43 20.85 ± 0.31 

C. Palomares (CIEMAT)       NNN16 Beijin 21 November 4, 2016 

Results 
FD-I FD-II ND 

sin2(2θ13 ) = 0.119 ± 0.016  (stat.+syst.) (χ2/dof = 236.2/114) 

Background Estimation FD Fit output FD Estimation ND Fit output ND 
9Li (β-n) 2.59 ± 0.61 2.55 ± 0.23 11.11 ± 2.96 14.4 ± 1.2 

Correlated 2.54 ± 0.10 2.51 ± 0.05 20.77 ± 0.43 20.85 ± 0.31 

C. Palomares (CIEMAT)       NNN16 Beijin 21 November 4, 2016 
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CROSS CHECK
• As a cross check we performed a data-data fit using ND and FD-II.

• This is not affected by the MC spectrum distortion between [4,6] MeV.

• The obtained result is in agreement with the one from the data/MC fit using all the available statistics.

16

sin2(2θ13)R+S = (0.123 ± 0.023) 
χ2 / ndf: 10.6 / 38
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EXTRAPOLATION
• With the multi detector analysis 

(Gd+H) the statistics is no more a 
limiting factor. 

• The largest systematics comes from 
detection systematics:  the uncertainty 
on the proton number in the GC 
limits the sensitivity to 0.76% whereas 
if we consider only the neutrino 
target the detection systematics is 
0.3%.

• With a reduction on the proton 
number uncertainty we could reach 
a sensitivity ≤  0.01 (work in 
progress).
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DC sensitivity evolution for Gd+H analysis 

today’s result 

nominal running 
(3years ND:FD) 

DC largely dominated by proton# uncertainty 
Most conservative inputs/assumptions has been adopted so far 

(There is room from improvement) 

C. Palomares (CIEMAT)       NNN16 Beijin 23 November 4, 2016 

Systematic errors 
Phys.Rev.Lett.+108++
(2012)+131801+

Phys.Rev.+D86++
(2012)+052008+ JHEP+1410++

(2014)+086+

SD: single detector 
MD: relative uncertainties 
        in multiple detectors�

Main systematic errors: 
-  Detection: due to the uncertainty in proton# in GC, limiting sensitivity in Gd+H 
[Full volume: 0.53%(uncorrelated)/0.76%(total) [NT: 0.1%(uncorrelated)/0.3%(total)] !
-  Background: β-n (9Li) rate estimations are not used as input to rate+shape fit 
� rates are constrained in the fit with the shape information�

C. Palomares (CIEMAT)       NNN16 Beijin 18 November 4, 2016 

MD 
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CONCLUSIONS

• Double Chooz has released a measurement of mixing angle θ13 exploiting the multi detector 
analysis: sin2(2θ13)=0.119 ± 0.016.

• The use of all neutron captured (Gd+H) allowed for an increase of statistics (statistical error 
reduce by 40%) which was the limiting factor.

• The new analysis allowed to correctly take into account the (tiny) leak between Target and 
Gamma Catcher.

• The reactor flux uncertainty is strongly suppressed thanks to the almost iso-flux geometry 
(<0.1%).

• We are today dominated by the proton number uncertainty: work is in progress to reduce it and 
a final sensitivity better than 0.01 on sin2(2θ13) could be achieved.
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THE COLLABORATION

• France: 
CEA/IRFU SPP & SPhN & SEDI & SIS & SENAC Saclay,  
APC Paris,  Subatech Nantes,  IPHC Strasbourg

• Germany: 
MPIK Heidelberg,  TU München,  EKU Tübingen,  RWTH 
Aachen 

• Japan: 
Tohoku U.,  Niigata U.,  Tokyo Metropolitan U.,  Tokyo 
Inst.Tech.,  Kobe U., Tohoku Gakuin U.,  Hiroshima I 
Inst.Tech.
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RAS,  Kurchatov Institute (Moscow) 
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CIEMAT Madrid
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Alabama,  ANL,  Chicago,  Columbia,  Drexel,  Kansas State,  
MIT,  Notre Dame,  Tennessee,  IIT,  U.C. Davis, Virginia Tech 
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