New limits on neutrino magnetic moments

Omar Miranda

Cinvestav

March 24, 2017

Omar Miranda (Cinvestav) New limits on neutrino magnetic moments N

Outline

Motivation

2 Formalism

Based on B.C. Cañas, OGM, A. Parada, M. Tortola, J.W.F. Valle PLB **753** 191 (2016) and Add. PLB **757** 568 (2016).

In a minimal extension of the Standard Model the neutrino magnetic moment is expected to be very small:

$$\mu_{\nu} = 3.2 \times 10^{-19} \left(\frac{m_{\nu}}{1 eV}\right) \mu_B$$

B.W. Lee, R.E. Shrock, PRD **16** 1444 (1977) W. Marciano, A. I. Sanda PLB **67** 303 (1977) Charged scalar singlet

$$\mu_{ij} = e \sum_{k} \frac{f_{ki} g_{kj}^{\dagger} + g_{ik} f_{kj}^{\dagger}}{32\pi^2} \frac{m_{Ik}}{m^2_{\eta}} \left(\ln \frac{m_{\eta}^2}{m_{Ik}^2} - 1 \right).$$

M. Fukugita, T. Yanagida PRL 58 (1987) 1807

• Charged scalars plus additional simmetries

$$\mu_{lphaeta}=erac{ff'}{8\pi^2}rac{m_ au}{m_\eta^2}\lnrac{m_\eta^2}{m_ au^2}$$

R. Barbieri, R. N. Mohapatra PLB **218** 225 (1989) K.S. Babu, R.N. Mohapatra PRL **63** (1989) 228

J. Barranco, OGM, Moura, Parada, PLB 718 26 (2012)

S. Hummer, M. Maltoni, W. Winter, C. Yaguna, Astropart. Phys. 34 205 (2010)

A.M. Hillas, Ann. Rev. Astron. Astrophys. 22 425 (1984)

• SN 1987A

$$\mu_{
u} \leq 1 imes 10^{-12} \mu_B$$

R. Barbieri, R.N. Mohapatra, PRL 61 (1988) 27

A. Ayala, J.C. D'Olivo, M. Torres, PRD 59 (1999)111901

• Red giant luminosity

$$\mu_{
u} \leq 3 imes 10^{-12} \mu_B$$

G.G. Raffelt PRL 64 (1990) 2856

See also the review: C. Giunti, A. Studenikin RMP 87 (2015) 531

$$\mathcal{H}_{em}^{M} = -\frac{1}{4}\nu_{L}^{T}C^{-1} \left(\mu - id\gamma_{5}\right)\sigma^{\alpha\beta}\nu_{L}F_{\alpha\beta} = -\frac{1}{4}\nu_{L}^{T}C^{-1} \lambda \sigma^{\alpha\beta}\nu_{L}F_{\alpha\beta} + h.c.,$$

$$\mu^T = -\mu, \qquad d^T = -d$$

J. Schechter and J. W. F. Valle, PRD 24 1883 (1981)

P. B. Pal and L. Wolfenstein, Phys. Rev. D25, 766 (1982)

B. Kayser, Phys.Rev. D26, 1662 (1982)

J. F. Nieves, Phys. Rev. D26, 3152 (1982)

The above discussion could be translated into a more phenomenological approach in which the NMM is described by a complex matrix $\lambda = \mu - id$ $(\tilde{\lambda})$ in the flavor (mass) basis, that for the Majorana case takes the form

$$\lambda = \begin{pmatrix} 0 & \Lambda_{\tau} & -\Lambda_{\mu} \\ -\Lambda_{\tau} & 0 & \Lambda_{e} \\ \Lambda_{\mu} & -\Lambda_{e} & 0 \end{pmatrix}, \qquad \tilde{\lambda} = \begin{pmatrix} 0 & \Lambda_{3} & -\Lambda_{2} \\ -\Lambda_{3} & 0 & \Lambda_{1} \\ \Lambda_{2} & -\Lambda_{1} & 0 \end{pmatrix},$$

where $\lambda_{\alpha\beta} = \varepsilon_{\alpha\beta\gamma}\Lambda_{\gamma}$.

The transition magnetic moments Λ_{α} and Λ_{i} are complex parameters:

$$\Lambda_{\alpha} = |\Lambda_{\alpha}| e^{i\zeta_{\alpha}}, \qquad \Lambda_{i} = |\Lambda_{i}| e^{i\zeta_{i}}.$$

W. Grimus, T. Schwetz, NPB 587 45 (2000)

The electromagnetic contribution is given by

$$\left(\frac{d\sigma}{dT}\right)_{em} = \frac{\pi\alpha^2}{m_{\rm e}^2\mu_B^2} \left(\frac{1}{T} - \frac{1}{E_\nu}\right){\mu_\nu}^2, \label{eq:emultiplication}$$

where μ_{ν} is an effective magnetic moment.

 $\mu_{\bar{
u}_e} \leq 7.4 imes 10^{-11} \mu_B$

H. Wong et al. Phys Rev. D75

012001 (2007)

$$\mu_{ar{
u}_e} \leq 2.9 imes 10^{-11} \mu_B$$

A.G. Beda et al. Adv High Energy

Phys. 2012 350150 (2012)

Figure : Weak and electromagnetic cross-sections calculated for several neutrino magnetic moment values.

-

In the flavor basis

$$(\mu_{\nu}^{F})^{2} = a_{-}^{\dagger}\lambda^{\dagger}\lambda a_{-} + a_{+}^{\dagger}\lambda\lambda^{\dagger}a_{+}.$$

In this case
$$(\overline{\nu_e})$$
: $a_+ = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $a_- = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.

$$(\mu_R^F)^2 = |\Lambda_{\mu}|^2 + |\Lambda_{\tau}|^2.$$

In the mass basis

$$(\mu_{\nu}^{M})^{2}= ilde{a}_{-}^{\dagger} ilde{\lambda}^{\dagger} ilde{\lambda} ilde{a}_{-}+ ilde{a}_{+}^{\dagger} ilde{\lambda} ilde{\lambda}^{\dagger} ilde{a}_{+},$$

where $\tilde{a}_{-} = U^{\dagger}a_{-} \rightarrow \tilde{a}_{-}^{\dagger} = a_{-}^{\dagger}U$, $\tilde{a}_{+} = U^{T}a_{+} \rightarrow \tilde{a}_{+}^{\dagger} = a_{+}^{\dagger}U^{*}$.

$$\begin{aligned} (\mu_R^M)^2 &= |\mathbf{A}|^2 - s_{12}^2 c_{13}^2 |\Lambda_2|^2 - c_{12}^2 c_{13}^2 |\Lambda_1|^2 - s_{13}^2 |\Lambda_3|^2 \\ &- 2s_{12} c_{12} c_{13}^2 |\Lambda_1| |\Lambda_2| \cos \delta_{12} - 2c_{12} c_{13} s_{13} |\Lambda_1| |\Lambda_3| \cos \delta_{13} \\ &- 2s_{12} c_{13} s_{13} |\Lambda_2| |\Lambda_3| \cos \delta_{23}, \quad \theta_{13} \neq 0 \end{aligned}$$

$$\delta_{12} = \xi_3$$
, $\delta_{23} = \xi_2 - \delta$, and $\delta_{13} = \delta_{12} - \delta_{23}$.

$$\begin{aligned} (\mu_R^M)^2 &= |\mathbf{A}|^2 - s_{12}^2 c_{13}^2 |\Lambda_2|^2 - c_{12}^2 c_{13}^2 |\Lambda_1|^2 - s_{13}^2 |\Lambda_3|^2 - 2s_{12} c_{12} c_{13}^2 |\Lambda_1| |\Lambda_2| \cos \delta_{12} \\ &- 2c_{12} c_{13} s_{13} |\Lambda_1| |\Lambda_3| \cos \delta_{13} - 2s_{12} c_{13} s_{13} |\Lambda_2| |\Lambda_3| \cos \delta_{23}. \end{aligned}$$

Figure : Effective Majorana TMM probed in reactor neutrino experiments, versus the relative phases δ_{ij} for three limiting cases where one of the absolute values $|\Lambda_k|$ vanishes.

э

$$(\mu_{\nu}^{F})^{2} = a_{-}^{\dagger}\lambda^{\dagger}\lambda a_{-} + a_{+}^{\dagger}\lambda\lambda^{\dagger}a_{+}.$$

In this case
$$(\overline{\nu_{\mu}}, \nu_{e}, \nu_{\mu})$$
: $a_{+} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $a_{-} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$.

$$(\mu_{A}^{F})^{2} = |\mathbf{\Lambda}|^{2} + |\Lambda_{e}|^{2} + 2 |\Lambda_{\tau}|^{2} - 2 |\Lambda_{\mu}| |\Lambda_{e}| \cos \eta,$$

where $|\mathbf{\Lambda}|^2 = |\Lambda_e|^2 + |\Lambda_\mu|^2 + |\Lambda_\tau|^2$ and $\eta = \zeta_e - \zeta_\mu$.

$$(\mu_{\nu}^{M})^{2} = \tilde{a}_{-}^{\dagger} \tilde{\lambda}^{\dagger} \tilde{\lambda} \tilde{a}_{-} + \tilde{a}_{+}^{\dagger} \tilde{\lambda} \tilde{\lambda}^{\dagger} \tilde{a}_{+}.$$

In this case

$$(\mu_{\rm sol}^{M})^{2} = |\mathbf{A}|^{2} - c_{13}^{2}|\Lambda_{2}|^{2} + (c_{13}^{2} - 1)|\Lambda_{3}|^{2} + c_{13}^{2}P_{e1}^{2\nu}(|\Lambda_{2}|^{2} - |\Lambda_{1}|^{2}).$$

This expression is independent of any phase and we take into account the non-zero value of θ_{13} .

Results

Omar Miranda (Cinvestav) New limits on neutrino magnetic moments э

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Limits on the effective NMM from reactor and accelerator data

Experiment	Bounds	
Reactors		
KRASNOYARSK	$\mu_{ar{ u}_e} \leq 2.7 imes 10^{-10} \mu_B$	
ROVNO	$\mu_{ar{ u}_e} \leq 1.9 imes 10^{-10} \mu_B$	
MUNU	$\mu_{ar{ u}_{e}} \leq 1.2 imes 10^{-10} \mu_B$	
TEXONO	$\mu_{ar{ u}_{e}} \leq 2.0 imes 10^{-10} \mu_B$	
GEMMA	$\mu_{ar{ u}_{e}} \leq 2.9 imes 10^{-11} \mu_B$	
Accelerators		
LAMPF	$\mu_{ u_{e}} \leq 7.3 imes 10^{-10} \mu_{B}$	
LAMPF	$\mu_{ u_{\mu}} \leq 5.1 imes 10^{-10} \mu_B$	
LSND	$\mu_{ u_e} \leq 1.0 imes 10^{-9} \mu_B$	
LSND	$\mu_{ u_{\mu}} \leq 6.5 imes 10^{-10} \mu_B$	
Solar		
Borexino	$\mu \le 5.4 \times 10^{-11} \mu_B$	

Experiment.	$ \Lambda_1 $	$ \Lambda_2 $	$ \Lambda_3 $
KRASN.	$4.7 imes10^{-10}\mu_B$	$3.3 imes10^{-10}\mu_B$	$2.8 imes10^{-10}\mu_B$
ROVNO	$3.0 imes10^{-10}\mu_B$	$2.1 imes10^{-10}\mu_B$	$1.8 imes10^{-10}\mu_B$
MUNU	$2.1 imes10^{-10}\mu_B$	$1.5 imes10^{-10}\mu_B$	$1.3 imes10^{-10}\mu_B$
TEXONO	$3.4 imes10^{-10}\mu_B$	$2.4 imes10^{-10}\mu_B$	$2.0 imes10^{-10}\mu_B$
GEMMA	$5.0 imes10^{-11}\mu_B$	$3.5 imes10^{-11}\mu_B$	$2.9 imes10^{-11}\mu_B$
LSND	$6.0 imes10^{-10}\mu_B$	$8.1 imes10^{-10}\mu_B$	$7.0 imes10^{-10}\mu_B$
LAMPF	$4.5 imes10^{-10}\mu_B$	$6.2 imes10^{-10}\mu_B$	$5.3 imes10^{-10}\mu_B$
Borexino	$8.7 imes10^{-11}\mu_B$	$6.8 imes10^{-11}\mu_B$	$5.4 imes10^{-11}\mu_B$

Table : 90% C.L. limits on the NMM components in the mass basis, Λ_i , from reactor, accelerator, and solar data from Borexino. In this particular analysis we constrain one parameter at a time, setting all other magnetic moment parameters and phases to zero.

Combined analysis

Figure : 90% C.L. allowed regions for the TNMMs in the mass basis. The result of this plot was obtained for the two parameters $|\Lambda_i| vs |\Lambda_j|$ marginalizing over the third component. We show the result of a combined analysis of reactor and accelerator data with all phases set to zero except for $\delta = 3\pi/2$ (magenta region). We also show the result of the Borexino data analysis only, that is phase-independent (grey region).

Proposals for the future

۲	TEXONO: 1kg of germanium, reactor neutrinos	Nucl.Instrum.Meth. A836 (2016) 67-82		
۲	COHERENT: Spallation source with several rooms for one or even more detectors			
	arXiv:1509.08702, 1211.5199			
۰	CLEAR: stopped- π ν beam and kg-to-ton detector	0910.1989		
۰	Connie: Reactor antineutrino experiment in Brasil	JINST 11 (2016) P07024		
۲	Kalinin: Reactor antineutrino experiment	JINST 8 (2013) P10023		
٠	MINER: Reactor antineutrino experiment	Nucl.Instrum.Meth. A853 (2017) 53		

T.S. Kosmas, OGM, D.K. Papoulias, M. Tortola, J.W.F. Valle, PLB 750 459 (2015)

э

T.S. Kosmas, OGM, D.K. Papoulias, M. Tortola, J.W.F. Valle, PRD 92 013011 (2015)

э

- $\checkmark\,$ We have analyzed the most recent data on neutrino electron scatting and shown the current status of the constraints on NMMs.
- ✓ We have presented a detailed discussion of the constraints on the absolute value of the TMMs, as well as the role of the CP phases, stressing the complementarity of different experiments.
- Perspectives for a future improvement on the current constraints have been briefly discussed, especially for coherent neutrino-nucleus scattering

Thanks

э.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

2

$$\tilde{\lambda} \to 3 \text{ MM phases} \to \zeta_1, \zeta_2, \zeta_3 \quad (\Lambda_i = |\Lambda_i| e^{i\zeta_i})$$

 $U \to 3 \text{ CPV phases} \to \delta, \quad 2 - \text{Majorana phases},$

three of these six complex phases are irrelevant, as they can be reabsorbed.

We give our results in terms of: δ , $\xi_2 = \zeta_3 - \zeta_1$ and $\xi_3 = \zeta_2 - \zeta_1$.

W. Grimus, T. Schwetz, NPB 587 45 (2000)

The differential cross section is given by

$$\frac{d\sigma_{\alpha}}{dT_{e}}(E_{\nu}, T_{e}) = \overline{P}_{ee} \frac{d\sigma_{e}}{dT_{e}}(E_{\nu}, T_{e}) + (1 - \overline{P}_{ee}) \frac{d\sigma_{\mu-\tau}}{dT_{e}}(E_{\nu}, T_{e}),$$

where the average survival electron-neutrino probability for the Beryllium line, \overline{P}_{ee} , determines the flavour composition of the neutrino flux detected in the experiment. According to an analysis of solar neutrino data (excluding Borexino data to avoid any correlation with the present analysis) this value is set to $\overline{P_{ee}}^{\text{th}} = 0.54 \pm 0.03$.

Figure : 90% C.L. allowed regions for the TNMMs in the mass basis from the reactor experiment TEXONO. The two-dimensional projections in the plane $(|\Lambda_i|, |\Lambda_j|)$ have been calculated marginalizing over the third component. The magenta (outer) region is obtained for $\delta = 3\pi/2$ and $\xi_2 = \xi_3 = 0$, while the orange (inner) region appears for $\delta = 3\pi/2$, $\xi_2 = 0$ and $\xi_3 = \pi/2$.