How bright is the proton? Determining the photon content of the proton

Gavin Salam (CERN) with Manohar, Nason & Zanderighi 1607.04266 and work in progress Moriond EW, March 2017, La Thuile

parton distribution functions (PDFs)

LHC physics needs PDFs in region $\sim 10^{-3} - 0.5$

Typically known with good precision ~1–3%

E.g. NNPDF, MMHT, CT & PDF4LHC working group (+ also HERAPDF, ABM, ...)

DF4LHC15

parton distribution functions (PDFs)

LHC physics needs PDFs in r $\sim 10^{-3} - 0$.

Typically known w precision ~1-

E.g. NNPDF, MMHT, CT & PDF4

PDF4LHC15 for

parton distribution functions (PDFs)

One exception:

the photon distribution inside the proton (had up to 100% uncertainty)

PDF4LHC15 for uv & NNPDF

DF23 for \

one year ago: A YY resonance? From $YY \rightarrow YY$?

photon induced contribution to HW production

$pp \rightarrow HW^+ (\rightarrow l^+v) + X \text{ at } 13 \text{ TeV}$

non-photon induced contributions

photon-induced contribs (NNPDF23)

non-photon numbers from LHCHXSWG (YR4) including PDF uncertainties

it matters in new-physics searches

it matters in new-physics searches

it matters in new-physics searches

model-independent **Y** PDF fit (c. 2013)

Widely discussed photon-PDF estimates

	elastic	inelastic	LHAPDF public computer-readable form?
Gluck Pisano Reya 2002	dipole	model	
MRST2004qed	X	model	\checkmark
CT14qed_inc	dipole	model (data-constrained)	
Martin Ryskin 2014	dipole (only electric part)	model	×
Harland-Lang, Khoze Ryskin 2016	dipole	model	X
NNPDF23qed (& NNPDF30qed)	no separation; fit to data		

elastic part long known: Budnev, Ginzburg, Meledin & Serbo, Phys.Rept. 1974

How do you do better? \rightarrow Use electron-proton scattering

- Experiments have been going on for decades
- Usually seen as photons from electron probing proton structure

How do you do better? \rightarrow Use electron—proton scattering

- Experiments have been going on for decades
- ► Usually seen as photons from electron probing proton structure
- But can be viewed as electron probing proton's photonic field
- Everything about unpolarized EM electron-proton interaction encoded in two "structure functions" $F_2(x,Q^2)$ & $F_L(x,Q^2)$

$$\frac{d\sigma}{dxdQ^2} = \frac{4\pi\alpha^2}{xQ^4} \left(\left(1 - y + \frac{y^2}{2} \left(1 + 2x^2 \frac{m_p^2}{Q^2} \right) \right) F_2(x, Q^2) - \frac{y^2}{2} F_L(x, Q^2) \right)$$

Photon PDF in terms of F_2 and F_L — the LUX ded approach

 $xf_{\gamma/p}(x,\mu^2) = \frac{1}{2\pi\alpha(\mu^2)} \int_x^1 \frac{dz}{z} \left\{ \int_x^{\frac{\mu^2}{1-z}} \frac{dQ^2}{Q^2} \alpha^2(Q^2) \right\}$ $\left[\left(zp_{\gamma q}(z) + \frac{2x^2 m_p^2}{Q^2} \right) F_2(x/z, Q^2) - z^2 F_L\left(\frac{x}{z}, Q^2\right) \right]$ $-\alpha^2(\mu^2)z^2F_2\left(\frac{x}{z},\mu^2\right)$

It subsequently emerged that two "forgotten" papers, Anlauf et. al, CPC70(1992)97 Mukherjee & Pisano, hep-ph/0306275, had the correct integrand (but not the limits)

This includes terms $\alpha L (\alpha_s L)^n$ $\alpha (\alpha_s L)^n$ $\alpha^2 L^2 (\alpha_s L)^n$ $(L = ln \mu^2 / \Lambda^2)$

Work in progress goes one order higher (e.g. extra power of α_s)

DATA

> x, Q^2 plane naturally breaks up into regions with different physical behaviours and data sources

 \blacktriangleright We don't use F_2 and F_L data directly, but rather various fits to data

ELASTIC COMPONENT

- Elastic component of $F_{2/L}$ lives at x=1
- ► Get from Sachs Form factors, G_E, G_M

RESONANCE COMPONENT

proton gets excited, e.g. to $\Delta \rightarrow p\pi$ and higher resonances

relevant for $(m_p + m_\pi)^2 < W^2 \leq 3.5 \text{GeV}^2$

CONTINUUM COMPONENT

- \blacktriangleright Less direct data for F_2 and F_L at high Q^2
- But we can reliably use PDFs and coefficient functions to calculate them
- ► We use NNLO coefficient functions in a zero-mass variable flavour-number scheme

As a PDF we use PDF4LHC15_nnlo_100 from LHAPDF

photon PDF results

Model-independent uncertainty (NNPDF) was 50–100%

0.8 up valence photon × 10 0.6 x f_i/p (x, μ^2) 0.4 0.2 $\mu = 100 \text{ GeV}$ 0 0.1 0.001 0.01

PDF4LHC15 for u_V & NNPDF23 for γ

photon PDF results

- Model-independent uncertainty (NNPDF) was 50–100%
- ► Goes down to O(1%) with LUXqed determination

0.8 up valence photon × 10 0.6 Y from x f_i/p (x, μ^2) LUXqed 0.4 0.2 $\mu = 100 \text{ GeV}$ 0.001 0.01 0.1

PDF4LHC15 for u_V & LUXqed for v

Impact for Higgs + W production

Impact for Higgs + W production

$pp \rightarrow H W^+ (\rightarrow l^+)$

non-photon induced contribu

photon-induced contribs (NNP

photon-induced contribs (LU)

v) + X at 13 TeV			
tions	91.2 ± 1.8 fb		
DF23)	6.0 +4.4 _{-2.9} fb		
(qed)	4.4 ± 0.1 fb		

$pp \rightarrow l^+l^-$, 13 TeV (QCD only at LO) 1.3 with QED, incl. yy (y PDF uncert. only) with QED, no yy (full PDF uncert.) → stat. error with 300 fb⁻¹ 1.2 LUXqed_plus_PDF4LHC15_nnlo 100 esult ratio to 0.9 2000 3000 1000 M [GeV]

yy component has few-% effect on Drell-Yan spectrum; negligible uncertainty

How much bright is the proton? [Y momentum fraction]

% of proton's momentum carried by photon

ohoton momentum [%]

momentum ($\mu = 100 \text{ GeV}$)		
gluon	46.8 ± 0.4%	
up valence	18.2 ± 0.3%	
down valence	7.5 ± 0.2%	
light sea quarks	20.7 ± 0.4%	
charm	4.0 ± 0.1%	
bottom	2.5 ± 0.1%	
photon	0.426 ± 0.003%	

LUXqed_plus_PDF4LHC15_nnlo_100

(1+107 members, symmhessian, errors handled by LHAPDF out of the box,

valid for $\mu > 10$ GeV)

CONCLUSIONS

Summary

The photon content of the proton matters starts to matter in many places at LHC

► Electron-proton scattering expts. (\rightarrow structure functions F_2 and F_L) have effectively been measuring proton's γ content for 50 years...

Photon distribution can be determined from that data to within 1–2% — i.e. as precise as any "QCD" parton

Available through LHAPDF as LUXqed_plus_PDF4LHC15_nnlo_100

. . . .

physical picture

photon distribution from fast-moving charged particle

Point-like particle, e.g. electrons

Fermi, Z. Phys. 1924 ; von Weizsäcker, Z. Phys 1924; Williams, Phys.Rev. 1934

$$f_{\gamma/e}(x,\mu^2) = \frac{\alpha}{2\pi} \left[\frac{1 + (1-x)^2}{x} \log\left(\frac{1-x}{x^2}\frac{\mu^2}{m_e^2}\right) - 2\frac{1-x-x^2\frac{m_e^2}{\mu^2}}{x} \right]$$

photon distribution from fast-moving charged particle

Point-like particle, e.g. electrons

$$f_{\gamma/e}(x,\mu^2) = \frac{\alpha}{2\pi} \left[\frac{1 + (1-x)^2}{x} \log\left(\frac{1-x}{x^2}\frac{\mu^2}{m_e^2}\right) - 2\frac{1-x-x^2\frac{m_e^2}{\mu^2}}{x} \right]$$

- But protons are not point-like...
- Budnev, Ginzburg, Meledin & Serbo, Phys.Rept. 1974 \rightarrow an answer for the case where the proton remains intact after photon emission

given in terms of "proton form factors" (measurable from elastic ep scattering)

Fermi, Z. Phys. 1924 ; von Weizsäcker, Z. Phys 1924; Williams, Phys.Rev. 1934

"number of photons" inside a proton?

Proton constantly fluctuates in & out of different Fock states, some of which have a photon.

The states with extra pions (etc.) are called the **inelastic** component

Intrinsically non-perturbative.

"number of photons" inside a proton?

Proton constantly fluctuates in & out of different Fock states, some of which have a photon.

The states with extra pions (etc.) are called the **inelastic** component

Intrinsically non-perturbative.

derivation of LUX master formula

How do you deduce photon distribution? Two approaches

Approach 1

- ► Imagine production of BSM heavy lepton (L), from a light neutral lepton l and a photon γ , i.e. $l\gamma \rightarrow L$
- ➤ Calculate lp → L + X in terms of (known) structure functions
- ➤ Calculate lp → L + X in terms of (unknown) photon distribution
- Equate them to get the photon distribution

heavy lepton L

 $\mathcal{L}_{\rm int} = (e/\Lambda) \overline{L} \, \sigma^{\mu\nu} F_{\mu\nu} \, l$

How do you deduce photon distribution? Two approaches

Approach 2

- exploits operator definition of the photon distribution
- is especially powerful for going to higher order

Results with this approach are in progress (and consistent with approach 1!)

$$f_{\gamma}(x,\mu) = -\frac{1}{4\pi x p^{+}} \int_{-\infty}^{\infty} dw e^{-ixwp^{+}} \times \langle p|F^{n\lambda}(wn)F^{n}{}_{\lambda}(0) + F^{n\lambda}(0)F^{n}{}_{\lambda}(wn)|p$$

STEP 1 work out a cross section (exact) in terms of F₂ and F_L struct. fns.

heavy neutral lepton L (mass M)

 $L^{\mu\nu}(k,q)$ leptonic tensor, calculate with Feynman diag. $\mathcal{L}_{int} = (e/\Lambda)\overline{L}\,\sigma^{\mu\nu}F_{\mu\nu}\,l$ $L^{\mu\nu}(k,q) = \frac{1}{2} \left(\frac{e_{\rm ph}^2}{q^2} / \Lambda^2 \right) \operatorname{Tr}\left(k' \left[q, \gamma^{\mu} \right] \left(k' + M \right) \left[\gamma^{\nu}, q \right] \right)$

$$g_{\mu\nu}F_1(x_{\rm Bj},Q^2) + \frac{p_\mu p_\nu}{p.q}F_2(x_{\rm Bj},Q^2) + \cdots \qquad Q^2 = -$$

hadronic tensor, known in terms of F₂ and F_L

$$\sum_{\mu\nu} L^{\mu\nu}(k,q)] \times 2\pi\delta((k-q)^2 - M^2)$$

Cross section in terms of structure functions

- ► Lagrangian of interaction: (magnetic moment coupling)
- \blacktriangleright Using leptons neutral and taking Λ large, ensure that only single-photon exchange is relevant
- > Answer is exact up to $1/\Lambda$ corrections

$$\sigma = \frac{c_0}{2\pi} \int_x^{1-\frac{2xm_p}{M}} \frac{dz}{z} \int_{Q_{\min}^2}^{Q_{\max}^2} \frac{dQ^2}{Q^2} \alpha_{\rm ph}^2 (-Q^2) \left[\left(2 - \frac{2x^2m_p^2}{Q^2} + \frac{z^2Q^2}{M^2} - \frac{2zQ^2}{M^2} - \frac{2zQ^2m_p^2}{M^4} \right) F_2(x/z) + \left(-z^2 - \frac{z^2Q^2}{2M^2} + \frac{z^2Q^4}{2M^4} \right) F_L(x/z, Q^2) \right]$$

$$c_0 = 16\pi^2/\Lambda^2$$

 $\mathcal{L}_{\rm int} = (e/\Lambda) \overline{L} \, \sigma^{\mu\nu} F_{\mu\nu} \, l$

hard-scattering cross section calculate in collinear factorisation

MS photon distribution: **TO BE DEDUCED**

 $f_{\gamma/p}(x,\mu^2)$

 $\sigma = c_0 \sum_{a} \int \frac{dx}{x} \,\hat{\sigma}_a \left(\frac{M^2}{xs}, \mu^2\right) \, x f_{a/p} \left(x, \mu^2\right)$

Cross section in terms of structure functions

► Hard cross section driven by the photon distribution at LO

$$\hat{\sigma}_{a}(z,\mu^{2}) = \frac{\alpha(\mu^{2})\delta(1-z)\delta_{a\gamma}}{2\pi} + \frac{\frac{\alpha^{2}(\mu^{2})}{2\pi}}{2\pi} + zp_{\gamma q}(z)\ln\frac{M^{2}(1-z)^{2}}{z\mu^{2}} \int_{i\in\{q,\bar{q}\}} e^{i\theta_{q}}$$

>Quarks and gluons come in at higher orders

Accuracy aim

- > Take quark and gluon distributions $\sim O(1)$
- > α is QED coupling, α_s is QCD coupling, $L = \ln \mu^2 / m_p^2$
 - Take $L \sim 1/\alpha_s$, so all $(\alpha_s L)^n \sim 1$
 - > Think of $\alpha \sim (\alpha_s)^2$
- > To first order, photon distribution $\sim (\alpha L)$
- > we aim to control all terms:
 - $\succ \alpha L (\alpha_{s} L)^{n}$ LO
 - $\succ \alpha_{s} \alpha L (\alpha_{s}L)^{n} \equiv \alpha (\alpha_{s}L)^{n}$ [NLO — extra α_s or 1/L] $\succ \alpha^2 L^2 (\alpha_s L)^n$ NLO — extra αL
- > Matching done at large M^2 and μ^2 to eliminate higher twists

- \blacktriangleright Repeat calculation for a different process ($\gamma p \rightarrow H + X$, via $\gamma \gamma \rightarrow H$). Intermediate results differ, final photon distribution is identical.
- \blacktriangleright Substitute elastic-scattering component of F_2 and F_L :

$$F_2^{\text{el}} = \frac{[G_E(Q^2)]^2 + [G_M(Q^2)]^2 \tau}{1 + \tau} \delta(1 - x) ,$$

$$F_L^{\text{el}} = \frac{[G_E(Q^2)]^2}{\tau} \delta(1 - x) , \qquad \tau = \frac{Q^2}{4m_p^2} \delta(1 - x) ,$$

and magnetic (G_M) Sachs proton form factors

and reproduce widely-used Equivalent Photon Approximation with electric (G_E)

Budnev et al., Phys.Rept.15(1975)181

Cross checks & literature comparisons

- $\succ \mu^2$ derivative of our answer should reproduce known DGLAP QCD-QED splitting functions
- ► At LO, this is trivial.
- functions (C)

$$P_{\gamma q}^{(1,1)} = e_q^2 \left[p_{\gamma q} \otimes C_{2q} - h \otimes C_{Lq} + (\bar{p}_{\gamma q} - h) \otimes P_{qq}^{(1,0)} \right] ,$$

$$P_{\gamma g}^{(1,1)} = \sum_{q,\bar{q}} e_q^2 \left[p_{\gamma q} \otimes C_{2g} - h \otimes C_{Lg} + (\bar{p}_{\gamma q} - h) \otimes P_{qg}^{(1,0)} \right] ,$$

$$P_{\gamma \gamma}^{(1,1)} = (2\pi)^2 b_{\alpha}^{(1,2)} \delta(1-x) = -C_F N_C \sum_q e_q^2 \delta(1-x)$$

 $h(z) \equiv z \text{ and } \bar{p}_{\gamma q}(z) \equiv p_{\gamma q}(z) \ln \frac{1}{1-z}$

These agree with de Florian, Sborlini & Rodrigo results

► At NLO we get relations between QED-QCD splitting functions (P) and DIS coefficient

for $O(\alpha \alpha_s)$ terms, arXiv:1512.00612

contributions & uncertainties

F₂ and F_L in our parametrisation

SEPARATE CONTRIBUTIONS TO PHOTON PDF

RES

.9

Ξ

M

.7

replace CLAS resonance fit with Christy-Bosted

RES

.9

M

.7

replace CLAS resonance fit with Christy-Bosted

RES

.9

M

.7

replace CLAS resonance fit with Christy-Bosted

matching procedure for full set of partons

- ► evaluate master eqn. for $\mu = 100$ GeV (with default PDF4LHC15_nnlo partons)
- \blacktriangleright Do O(aa_s) photon evolution down to $\mu = 10$ GeV (other partons: pure QCD evln.)
- ► Adjust momentum sum-rule by rescaling gluon $g(x) \rightarrow 0.993g(x)$
- Evolve back up with NNLO-QCD & $O(aa_s)$ QED for all partons

better approach would be full PDF re-fit for QCD partons incl. EW/QED corrections & LUXged photon

higher-order contributions

LUXqed v. others

ratio of HKR (1607.04635) to LUXqed

HKR based on elastic contribution (dipole approx) + model for inelastic part + evolution

ratio of ATLAS photon (1606.01736) to LUXqed

ATLAS result based on reweighting of NNPDF23 with high-mass (Mll > 116 GeV) data.

Fit is below LUXqed

later fit (1701.08553) to same data

fit to ≻HERA combined data ≻ATLAS DY Fit is above LUXqed

explanation does not lie with NNPDF23 v. 30 evolution differences

extra dilepton plots

yy component has few-% effect on Drell-Yan spectrum; negligible uncertainty

$pp \rightarrow l^+l^-$, 13 TeV (QCD only at LO) 1.3 with QED, incl. $\gamma\gamma$ (γ PDF uncert. only) with QED, no yy (full PDF uncert.) 1.2 LUXqed_plus_PDF4LHC15_nnlo_100 result ratio to 0.9 1000 2000 3000 M [GeV]

yy component has few-% effect on Drell-Yan spectrum; negligible uncertainty

yy component has few-% effect on Drell-Yan spectrum; negligible uncertainty

