

Astronomy in the 21st century: Drowning in data, Starving for knowledge

Emille E. O. Ishida

Laboratoire de Physique Corpusculaire - Université Blaise Pascal Clermont Ferrand, France

The Big Picture

Astronomy began with 3 elements

In 1969, the CCD

Data

Analyzers

In the 17th century...

1 telescope

- 1 observer
- 1 object

An illustrative example:

SDSS – Sloan Digital Sky Survey

1992

2.5 Terapixels of images10 TB of raw data0.5 TB catalogs

1992 - 2000: planning 2001 - 2009: observing

An illustrative example:

SDSS – Sloan Digital Sky Survey

1992

2.5 Terapixels of images10 TB of raw data0.5 TB catalogs

1992 - 2000: planning 2001 - 2009: observing

How to deliver 0.5 TB of useful data to all users?

A. Szalay, https://www.youtube.com/watch?v=FlcdG4hUn1Q

An illustrative example:

SDSS – Sloan Digital Sky Survey

1992

2.5 Terapixels of images10 TB of raw data0.5 TB catalogs

1992 - 2000: planning 2001 - 2009: observing

> 2.5m mirror New Mexico, USA

2009

5 Tpx of images 120TB processed data 35TB catalogs

by Ann K. Finkbeiner, 2012

A. Szalay, https://www.youtube.com/watch?v=FlcdG4hUn1Q

Case study:

Photometric Redshifts

Redshifts (z) ↔ Distances

Spectra are expensive!

Alternative measurement 300 dim \rightarrow 5 dim

Alternative measurement 300 dim \rightarrow 5 dim

Alternative measurement 300 dim \rightarrow 5 dim

u-g	g-r	r-i	i-z	redshift
2.07	1.39	0.48	0.27	0.31
1.54	1.58	0.54	0.42	0.34
1.03	1.76	0.67	0.37	0.41
2.17	1.30	0.43	0.30	0.19
1.36	1.72	0.52	0.36	0.32

Photo-z: methods

Hybrid

Machine Learning

Photo-z: methods

Photo-z: Artificial Neural Networks

Used in astronomy since 1990's

Plot by Rafael S. de Souza

Photo-z: Artificial Neural Networks

FIG. 2.— Spectroscopic vs. photometric redshifts for ANNz applied to 10,000 galaxies randomly selected from the SDSS EDR.

Collister & Lahav, 2003

Photo-z: Nearest Neighbors

Supervised Learning

Photo-z: Nearest Neighbors

Zhang et al., 2013

Photo-z: Symbolic Regression

Schimdt & Lipson, Science, 324 (2009)

Photo-z: Symbolic Regression

Photo-z: Generalized Linear Models

 $rms(\Delta z) \sim 0.034$

From COIN Residence Program #1: Elliot et al. (incl. **Ishida**), Astronomy & Computing, 10 (2015)

Statistical model

Photo-z: Generalized Linear Models

More on GLMs (Bayesian approach):

https://github.com/RafaelSdeSouza/ADA8

BAYESIAN MODELS for Astrophysical Data

Using R, JAGS, Python and Stan

Joseph M. Hilbe, Rafael S. de Souza and Emille E. O. Ishida Cambridge University Press May/2017

From COIN Residence Program #1: Elliot et al. (incl. **Ishida**), Astronomy & Computing, 10 (2015)

Photo-z: Local Linear Regression

g - r

Photo-z: Local Linear Regression

Official SDSS DR12 Photoz method

Beck et al., MNRAS 460 (2016)

Summary of results:

Challenges

Supervised methods cannot extrapolate

Measurement errors

Impossible to get a representative training sample Training will always be: Brighter Closer

Higher data quality Diverse population

Challenges

Impossible to get a representative training sample

Training will always be: Brighter Closer

> Higher data quality Diverse population

The quest for representativeness

Domain Adaptation

Give weights

Feature space transformation

Teddy catalogue

Probing the effect of coverage

A /B follow SDSS spec distribution

- B is completely representative of A
- C has the same coverage but slightly different shape
- D has a wider domain in r-mag and color (no coverage)

From COIN Residence Progrm #3 – in prep

Teddy

Teddy catalogue

Probing the effect of coverage

A /B follow SDSS spec distribution

- B is completely representative of A
- C has the same coverage but slightly different shape

D has a wider domain in r-mag and color (no coverage)

Happy catalogue

The effect of coverage + photometric errors

Happy catalogue

The effect of coverage + photometric errors

Happy

From COIN Residence Program #3 – in prep

The Big Picture

(data perspective)

How are spectroscopic sets constructed?

Take spectra for learning and determine everything else

Alternative approach Landmark selection + Active Learning

Alternative approach Landmark selection + Active Learning

Take home message

Astronomy has

evolved ...

...there is still a long way to go

The REAL goal is HUMAN learning

