Astronomy in the 21st century: Drowning in data, Starving for knowledge

Emille E. O. Ishida
Laboratoire de Physique Corpusculaire - Université Blaise Pascal Clermont Ferrand, France

The Big Picture

Astronomy began with 3 elements

In 1969, the CCD

Data

Analyzers

An illustrative example:

SDSS - Sloan Digital Sky Survey

1992

2.5 Terapixels of images

10 TB of raw data
0.5 TB catalogs
1992 - 2000: \quad Planning
2001 - 2009: observing
2.5 m mirror

New Mexico, USA

SDSS - Sloan Digital Sky Survey

1992
2.5 Terapixels of images

10 TB of raw data 0.5 TB catalogs

$1992-2000:$	planning
2001 - 2009:	observing

How to deliver 0.5 TB of useful data to all users?
A. Szalay, https://www.youtube.com/watch?v=FlcdG4hUn1Q

SDSS - Sloan Digital Sky Survey

1992

2.5 Terapixels of images

10 TB of raw data
0.5 TB catalogs

2009

5 Tpx of images
120TB processed data 35TB catalogs

by Ann K. Finkbeiner, 2012
A. Szalay, https://www.youtube.com/watch?v=FlcdG4hUn1Q

Case study:

Photometric Redshifts

Redshifts $(z) \leftrightarrow$ Distances

Idea
 anno

Observation

Velocities
Cosmological model

distances

finite light velocity

Redshifts are important!

Photometric Redshifts

Spectra are expensive!

Photometric Redshifts

Alternative measurement $300 \mathrm{dim} \rightarrow 5 \mathrm{dim}$

Photometric Redshifts

Alternative measurement $300 \mathrm{dim} \rightarrow 5 \mathrm{dim}$

Photometric Redshifts

Alternative measurement $300 \mathrm{dim} \rightarrow 5 \mathrm{dim}$

Photo-z: a regression problem

u-g	g-r	r-i	$i-z$	redshift
2.07	1.39	0.48	0.27	0.31
1.54	1.58	0.54	0.42	0.34
1.03	1.76	0.67	0.37	0.41
2.17	1.30	0.43	0.30	0.19
\ldots	\ldots	\ldots	\ldots	\ldots
1.36	1.72	0.52	0.36	0.32

Photo-z: a regression problem

Photo-z: methods

Hybrid
Template fitting

Machine
Learning

Photo-z: methods

Photo-z: Artificial Neural Networks

Used in astronomy since $1990^{\circ} \mathrm{s}$

Plot by Rafael S. de Souza

Photo-z: Artificial Neural Networks

FIG. 2.- Spectroscopic vs. photometric redshifts for ANNz applied to 10,000 galaxies randomly selected from the SDSS EDR.

Photo-z: Nearest Neighbors

Photo-z: Nearest Neighbors

Photo-z: Symbolic Regression

 data from physical system (e.g. pendulum time series)

$$
\begin{gathered}
f=z+9.8 \cdot \sin (x) \\
f=0.5 \cdot y^{2}-9.8 \cdot \cos (x)
\end{gathered}
$$

When predictive ability reaches sufficient accuracy, return the most parsimonious equations

$$
\begin{array}{r}
f=(x-1.12) \cdot \cos (y) \\
f=0.91 \cdot \exp (y / z) \\
f=0.5 \cdot y^{2}-9.8 \cdot \cos (x)
\end{array}
$$

(3) Generate candidate

 symbolic functions. Initially these are random; later they are small variations of best equations selected in (5)$$
\text { (5) Compare predicted }\left.\quad \frac{\Delta y}{\Delta x}\right|_{D,} ^{?}=\left.\frac{\partial y}{\partial x}\right|_{f\left(x, y_{0}\right)} \quad \begin{aligned}
& \left.\begin{array}{c}
\text { Explore } \\
\text { Candidate } \\
\text { Equations }
\end{array}\right)
\end{aligned} \begin{aligned}
& \frac{\partial}{\partial y}[f]=y+\sin (x) \frac{\Delta x}{\Delta y} \\
& \left.\frac{\partial y}{\partial x}\right|_{f(x, y)}=\frac{\partial f}{\partial x} / \frac{\partial f}{\partial y}
\end{aligned}
$$ partial derivatives (4) with numerical partial derivatives (2). Select best equations.

。
Derive symbolic partial derivatives of pairs of variables for each candidate function

Photo-z: Symbolic Regression

Final expression:

$$
z_{\text {phot }}=\frac{0.4436 r-8.261}{24.4+(g-r)^{2}(g-i)^{2}(r-i)^{2}-g}
$$

$$
+0.5152(r-i)
$$

Pre-COIN paper:
Krone-Martins, Ishida \& de Souza, MNRASL 443 (2014)

Photo-z: Generalized Linear Models

From COIN Residence Program \#1:
Elliot et al. (incl. Ishida), Astronomy \& Computing, 10 (2015)

Photo-z: Generalized Linear Models

 More on GLMs(Bayesian approach):
https://github.com/RafaelSdeSouza/ADA8

From COIN Residence Program \#1:
Elliot et al. (incl. Ishida), Astronomy \& Computing, 10 (2015)

Photo-z: Local Linear Regression

Nearest neighbors

Photo-z: Local Linear Regression

 official SDSS DR12 Photoz method
$\sigma\left(\Delta z_{\text {norm }}\right)=0.0205$

Beck et al., MNRAS 460 (2016)

Summary of results:

Challenges


```
Supervised methods cannot extrapolate
```

My HOBBY: EXTRAPOLATING

Measurement

errors

Challenges

The quest for representativeness

Domain Adaptation

Give weights

Weights

CRP \#3 - Budapest, 2016

Teddy catalogue

Probing the effect of coverage
A/B follow SDSS spec distribution
B is completely representative of A
C has the same coverage but slightly different shape
D has a wider domain in r-mag and color (no coverage)

From COIN Residence Progrm \#3 - in prep

Teddy catalogue

Probing the effect of coverage
A/B follow SDSS spec distribution
B is completely representative of A
C has the same coverage but slightly different shape
D has a wider domain in r-mag and color (no coverage)

Happy catalogue

The effect of coverage + photometric errors

From COIN Residence Program \#3 - in prep

Happy catalogue

The effect of coverage + photometric errors

The Big Picture

(data perspective)

How are spectroscopic sets constructed?

Take spectra for learning and determine everything else

Alternative approach

Landmark selection + Active Learning

Alternative approach

Landmark selection + Active Learning

TO BE

Take home message

Astronomy has

...there is still a long way to go

Astronomers won't do it alone

The REAL goal is HUMAN learning

