Studies for Muon to Electron Conversion at J-PARC - COMET -

Yoshitaka Kuno Department of Physics, Osaka University, Japan

October 21, 2016 IPHC, Strasbourg

muon to electron conversion in a muonic atom

$$\mu^- + N \rightarrow e^- + N$$

(charged lepton flavor violation)

- Flavour Physics in Particle Physics
- Physics Motivation of Charged Lepton Flavour Violation
- Muon to electron conversion
- COMET at J-PARC
- Highly intense muon beam sources
- COMET Phase-I (under construction)
- Summary

Flavour Transitions

Big Picture in Particle Physics

New Physics Beyond the Standard Model

The Standard Model is considered to be incomplete. New Physics is needed.

Intensity Frontiers and Rare Process

To explore new physics at high energy scale

The Intensity Frontier

use intense beams to observe rare processes and study the particle properties to probe physics beyond the SM.

Rare Decays Flavour Physics

Why Rare Decays ?

Effective Lagrangian with New Physics

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{C_{\text{NP}}}{\Lambda^2} O_{ij}^{(6)}$$

dimension 6

A is the energy scale of new physics ($\sim m_{NP}$)

 $C_{\rm NP}$ is the coupling constant.

New Physics could be....

 $\begin{tabular}{l} very high energy scale Λ with C_{NP} 1 \\ or \\ \hline very small C_{NP} with not-high energy Λ \end{tabular}$

Effective Lagrangian with New Physics

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{C_{\text{NP}}}{\Lambda^2} O_{ij}^{(6)}$$

dimension 6

A is the energy scale of new physics ($\sim m_{NP}$)

 $C_{\rm NP}$ is the coupling constant.

ex: Charged lepton flavour violation (CLFV), $\mu \rightarrow e\gamma$ (B<4.2x10⁻¹³ from MEG(2016))

$$\frac{C_{\rm NP}}{\Lambda^2} O_{ij}^{(6)} \to \frac{C_{\mu e}}{\Lambda^2} \overline{e}_L \sigma^{\rho\nu} \mu_R \Phi F_{\rho\nu}$$
$$\Lambda > 2 \times 10^5 \,{\rm TeV} \times (C_{\mu e})^{\frac{1}{2}} .$$

 $\Lambda > O(10^5)$ TeV with $C_{\mu e} \sim O(1)$ Or $C_{\mu e} \sim O(10^{-9})$ with $\Lambda < O(1)$ TeV

Why Rare Decays ?

Energy reach of New Physics by rare decays such as CLFV

$\Lambda > O(10^5)$ TeV

(Indirect search)

It would be strategic to pursue rare decays before high energy machines (100 TeV).

Why Leptons ?

FCNC (Flavor Changing Neutral Current)

Rare Process No SM Contribution to CLFV

$$B(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{l} (V_{MNS})^*_{\mu_l} (V_{MNS})_{el} \frac{m_{\nu_l}^2}{M_W^2} \right|^2$$

GIM suppression

Observation of CLFV would indicate a clear signal of physics beyond the SM with massive neutrinos.

Quarks (SM-suppressed) and Leptons (SM-forbidden)

$|A_{SM}|^2 \pm \Delta(|A_{SM}|^2)$

Various Models Predict CLFV.....

Example of Sensitivity to NP in High Energy Scale : SUSY models

For loop diagrams,

$$BR(\mu \to e\gamma) = 1 \times 10^{-11} \times \left(\frac{2\text{TeV}}{\Lambda}\right)^4 \left(\frac{\theta_{\mu e}}{10^{-2}}\right)^2 \quad y = \frac{g^2}{16\pi^2} \theta_{\mu e}$$

> sensitive to TeV energy scale with reasonable mixing

extra dimension model

Why Muons?

Why muons, not taus ?

of taus ~ O(10⁹)/year

of muons ~ O(10¹⁵)/year

of muons ~ O(10¹⁸)/year

"DNA of New Physics" (a la Prof. Dr. A.J. Buras)

W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi and D.M. Straub

		_			-		_
	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS
$D^0 - \overline{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{\rm CP}\left(B\to X_s\gamma\right)$	*	*	*	***	***	*	?
$A_{7,8}(B \to K^* \mu^+ \mu^-)$	*	*	*	***	***	**	?
$A_9(B \to K^* \mu^+ \mu^-)$	*	*	*	*	*	*	?
$B \to K^{(*)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s \to \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L \to \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***
$\mu \to e \gamma$	***	***	***	***	***	***	***
$\tau \rightarrow \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
d _n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g-2)_{\mu}$	***	***	**	***	***	*	?

These are a subset of a subset listed by Buras and Girrbach MFV, CMFV, $2HDM_{MFV}$, LHT, SM4, SUSY flavor. SO(10) – GUT, SSU(5)_{HN}, FBMSSM, RHMFV, L-R, RS₀, gauge flavor,

The pattern of measurement:

- $\star \star \star$ large effects
- ★★ visible but small effects
- ★ unobservable effects
 is characteristic,

often uniquely so,

of a particular model

GLOSSARY				
AC [10]	RH currents & U(1) flavor symmetry			
RVV2 [11]	SU(3)-flavored MSSM			
AKM [12]	RH currents & SU(3) family symmetry			
δ LL [13]	CKM-like currents			
FBMSSM [14]	Flavor-blind MSSSM			
LHT [15]	Little Higgs with T Parity			
	Warned Extra Dimensions			

Muon CLFV

Experimental Limits at Present and in the Future

process	present limit	future			
$\mu \rightarrow e\gamma$	<4.2 x 10 ⁻¹³	<10-14	MEG at PSI		
$\mu \rightarrow eee$	<1.0 x 10 ⁻¹²	<10 ⁻¹⁶	Mu3e at PSI		
$\mu N \rightarrow eN$ (in Al)	none	<10-16	Mu2e / COMET		
$\mu N \rightarrow eN$ (in Ti)	<4.3 x 10-12	10-18	PRISM		
$\tau \rightarrow e\gamma$	<1.1 x X1	0 -4 - 10 ⁻¹⁰	superKEKB		
τ→eee	<3.6 x 10 ⁻⁸	<10 ⁻⁹ - 10 ⁻¹⁰	superKEKB		
$\tau \rightarrow \mu \gamma$	<4.5 x 10 ⁻⁸	<10 ⁻⁹ - 10 ⁻¹⁰	superKEKB		
$\tau \rightarrow \mu \mu \mu$	<3.2 x 10 ⁻⁸	<10 ⁻⁹ - 10 ⁻¹⁰	superKEKB/LHCb		

Why Muon to Electron Conversion ?

What is Muon to Electron Conversion?

1s state in a muonic atom

nuclear muon capture

$$\mu^- + (A, Z) \longrightarrow \nu_\mu + (A, Z - 1)$$

Neutrino-less muon nuclear capture

$$\mu^- + (A, Z) \rightarrow e^- + (A, Z)$$

coherent process

Event Signature : a single mono-energetic electron of 105 MeV Backgrounds: (1) physics backgrounds

- (2) beam-related backgrounds
- (3) cosmic rays, false tracking

Physics Sensitivity Comparison : $\mu \rightarrow e\gamma vs$. $\mu - e conversion$

Photonic (dipole) interaction

Contact interaction

tree levels

$$L_{\mu N \to eN} = \frac{1}{1+\kappa} \frac{m_{\mu}}{\Lambda^2} \bar{\mu}_{\mathrm{R}} \sigma^{\mu\nu} e_{\mathrm{L}} F_{\mu\nu} + \frac{\kappa}{1+\kappa} \frac{1}{\Lambda^2} (\bar{\mu}_{\mathrm{L}} \gamma^{\mu} e_{\mathrm{L}}) (\bar{q}_{\mathrm{L}} \gamma_{\mu} q_{\mathrm{L}})$$

$$L_{\mu \to e\gamma} = \frac{m_{\mu}}{\Lambda^2} \bar{\mu}_{\rm R} \sigma^{\mu\nu} e_{\rm L} F_{\mu\nu}$$

µ-e conversion sensitive to many new physics

Experimental Comparison : $\mu \rightarrow e\gamma$ and μ -e Conversion

	Beam	background	challenge	beam intensity
μ→eγ	continuous beam	accidentals	detector resolution	limited
µ→eee	continuos beam	accidentals	detector resolution	limited
µ-e conversion	pulsed beam	beam-related	beam background	no limitation

µ-e Conversion : Target dependence (discriminating effective interaction)

R. Kitano, M. Koike and Y. Okada, Phys. Rev. D66, 096002 (2002)

vector interaction (with z boson)

vector interaction (with photon)

dipole interaction

scalar interaction

Signal of µ-e Conversion and Normal Muon Decays

Backgrounds for µ-e conversion

intrinsic physics backgrounds

Muon decay in orbit (DIO) Radiative muon capture (RMC) neutrons from muon nuclear capture Protons from muon nuclear capture

beam-related backgrounds Radiative pion capture (RPC) Beam electrons Muon decay in flights Neutron background Antiproton induced background

cosmic-ray and other backgrounds

Cosmic-ray induced background False tracking

Muon Decay in Orbit

Intrinsic Physics Background: Muon Decay in Orbit (DIO)

In order to make a new-generation experiment to search for μ -e conversion ...

$B(\mu N \to eN) \le 10^{-16}$

Principle of Measurement of µ-e Conversion

muon stopping target

A total number of muons is the key for success.

COMET: 10¹⁸ muons (past exp. 10¹⁴ muons) (note: 10¹⁰ sec=1000 years needed at PSI.) Long Construction-Periods

(1) Great Wall: 1800 years

(2) Cologne Cathedral: 630 years

(3) Cathedral of Strasbourg: 300 years

(4) Great Pyramid of Giza : 20 years

MuSIC at RCNP, Osaka University - Highly Intense Muon Source -

Production and Collection of Pions and Muons

Improvements for **Background Rejection**

Beam-related backgrounds

Beam pulsing with separation of 1µsec

measured between beam pulses

proton extinction = # protons between pulses/# protons in a pulse < 10⁻⁹

improve Muon DIO low-mass trackers in electron energy vacuum & thin target background resolution

Muon DIF background

curved solenoids for momentum selection eliminate energetic muons (>75 MeV/c)

based on the MELC proposal at Moscow Meson Factory

COMET at J-PARC

Mu2e at Fermilab

Single-event sensitivity : $(2.5 \pm 0.3) \times 10^{-17}$ Total background : (0.36 ± 0.10) events Expected limits : $< 6 \times 10^{-17}$ @90%C.L. Running time: 3 years (2x10⁷sec/year)

COMET at J-PARC: E21

COMET Collaboration

37 institutes, 15 countri

0:00 00:00

PI: Y. Kung

The COMET Collaboration

R. Abramishvili¹¹, G. Adamov¹¹, R. Akhmetshin^{6,31}, V. Anishchik⁴, M. Aoki³², Y. Arimoto¹⁸, I. Bagaturia¹¹, Y. Ban³, A. Bondar^{6, 31}, Y. Calas⁷, S. Canfer³³, Y. Cardenas⁷, S. Chen²⁸, Y. E. Cheung²⁸, B. Chiladze³⁵, D. Clarke³³, M. Danilov^{15,26}, P. D. Dauncey¹⁴, J. David²³, W. Da Silva²³, C. Densham³³, G. Devidze³⁵, P. Dornan¹⁴, A. Drutskoy^{15, 26}, V. Duginov¹⁶, L. Epshteyn^{6,30}, P. Evtoukhovich¹⁶, G. Fedotovich^{6,31}, M. Finger⁸, M. Finger Jr⁸, Y. Fujii¹⁸, Y. Fukao¹⁸, J-F. Genat²³, E. Gillies¹⁴, D. Grigoriev^{6, 30, 31} K. Gritsay¹⁶, E. Hamada¹⁸, R. Han¹, K. Hasegawa¹⁸, I. H. Hasim³², O. Hayashi³², Z. A. Ibrahim²⁴, Y. Igarashi¹⁸, F. Ignatov^{6,31}, M. Iio¹⁸, M. Ikeno¹⁸, K. Ishibashi²², S. Ishimoto¹⁸, T. Itahashi³², S. Ito³², T. Iwami³², X. S. Jiang², P. Jonsson¹⁴, V. Kalinnikov¹⁶, F. Kapusta²³, H. Katayama³², K. Kawagoe²², N. Kazak⁵, V. Kazanin^{6,31}, B. Khazin^{6,31}, A. Khvedelidze^{16,11}, T. K. Ki¹⁸, M. Koike³⁹, G. A. Kozlov¹⁶, B. Krikler¹⁴, A. Kulikov¹⁶, E. Kulish¹⁶, Y. Kuno³², Y. Kuriyama²¹, Y. Kurochkin⁵, A. Kurup¹⁴, B. Lagrange^{14, 21}, M. Lancaster³⁸, M. J. Lee¹², H. B. Li², W. G. Li², R. P. Litchfield³⁸, T. Loan²⁹, D. Lomidze¹¹, I. Lomidze¹¹, P. Loveridge³³, G. Macharashvili³⁵, Y. Makida¹⁸, Y. Mao³, O. Markin¹⁵, Y. Matsumoto³², T. Mibe¹⁸, S. Mihara¹⁸, F. Mohamad Idris²⁴, K. A. Mohamed Kamal Azmi²⁴, A. Moiseenko¹⁶, Y. Mori²¹, M. Moritsu³², E. Motuk³⁸, Y. Nakai²², T. Nakamoto¹⁸, Y. Nakazawa³², J. Nash¹⁴, J. -Y. Nief⁷, M. Nioradze³⁵, H. Nishiguchi¹⁸, T. Numao³⁶, J. O'Dell³³, T. Ogitsu¹⁸, K. Oishi²², K. Okamoto³², C. Omori¹⁸, T. Ota³⁴, J. Pasternak¹⁴, C. Plostinar³³, V. Ponariadov⁴⁵, A. Popov^{6,31}, V. Rusinov^{15,26}, A. Ryzhenenkov^{6,31}, B. Sabirov¹⁶, N. Saito¹⁸, H. Sakamoto³², P. Sarin¹³, K. Sasaki¹⁸ A. Sato³², J. Sato³⁴, Y. K. Semertzidis^{12,17}, D. Shemyakin^{6,31}, N. Shigyo²², D. Shoukavy⁵, M. Slunecka⁸, A. Straessner³⁷, D. Stöckinger³⁷, M. Sugano¹⁸, Y. Takubo¹⁸, M. Tanaka¹⁸, S. Tanaka²², C. V. Tao²⁹, E. Tarkovsky^{15,26}, Y. Tevzadze³⁵, T. Thanh²⁹, N. D. Thong³², J. Tojo²², M. Tomasek¹⁰, M. Tomizawa¹⁸, N. H. Tran³², H. Trang²⁹, I. Trekov³⁵, N. M. Truong³², Z. Tsamalaidze^{16,11}, N. Tsverava^{16,35}, T. Uchida¹⁸, Y. Uchida¹⁴, K. Ueno¹⁸, E. Velicheva¹⁶, A. Volkov¹⁶, V. Vrba¹⁰, W. A. T. Wan Abdullah²⁴, M. Warren³⁸, M. Wing³⁸, T. S. Wong³², C. Wu^{2, 28}, H. Yamaguchi²², A. Yamamoto¹⁸, Y. Yang²², W. Yao², Y. Yao², H. Yoshida³², M. Yoshida¹⁸, Y. Yoshii¹⁸, T. Yoshioka²², Y. Yuan², Y. Yudin^{6, 31}, J. Zhang², Y. Zhang², K. Zuber³⁷

COMET Logo

J-PARC@Tokai

Hadron Experimental Hall

10.00

COMET Exp. Area

COMET Proton Beamline

Time Structure of Measurement in COMET

Pion Capture in Solenoids

high muon yield

proton target in a solenoidal field (~5 T)

a long proton target (1.5~2 interaction length) of heavy material

O(10¹¹) stopped µ⁻/sec for 50 kW protons

note: dependent on solenoid field and aperture, proton target material.

Particle Trajectories in Curved Solenoid

keep particular momentum on bending plane dipole magnetic field (parallel to drift direction) Electric field (centrifugal force) B (perpendicular to screen) $B_{comp} = \frac{p}{ar} \frac{1}{2} \left(\cos \theta + \frac{1}{\cos \theta} \right)$

Mu2e vs. COMET

Select low momentum muons

eliminate muon decay in flight

Selection of 100 MeV electrons

eliminate protons from nuclear muon capture.

eliminate low energy events to make the detector quiet.

COMET Detectors

Straw Tracker (Str)

Straw Tracker Design

- inside vacuum with 1T
- more than five layers
- four planes / layer
- staggered by half a size
- gas $Ar:C_2H_6 = 50:50$

CAD design of the support ring

Straw Tube R&D

Electron Calorimeter (ECAL)

• ECAL

- Energy measurement
 - compliment momentum measure
- Needed for particle ID in beam BG s
- Target resolution 2-3% (at least < 5)
- Crystal choice
 - LYSO (20x20x(120-150) mm³)
- Photon sensor
 - APD readout with fast amplifier
 - MPPC
- Readout
 - ROESTI with different shaping time
 - Digitisation using WFD

COMET Signal Sensitivity (/2x10⁷ sec)

$$B(\mu^{-} + Al \to e^{-} + Al) \sim \frac{1}{N_{\mu} \cdot f_{cap} \cdot A_{e}},$$

- N_μ is a number of stopping muons in the muon stopping target. It is 2x10¹⁸ muons.
- f_{cap} is a fraction of muon capture, which is 0.6 for aluminium.

total protons	8.5x10 ²⁰
muon transport efficiency	0.008
muon stopping efficiency	0.3
# of stopped muons	2.0x10 ¹⁸

• A_e is the detector acceptance, which is $0.04 \sim 0.08$.

 $B(\mu^{-} + Al \to e^{-} + Al) = 2.6 \times 10^{-17}$ $B(\mu^{-} + Al \to e^{-} + Al) < 6 \times 10^{-17} \quad (90\% C.L.)$

Background Rates

Radiative Pion Capture	0.05		
Beam Electrons	$< 0.1^{\ddagger}$		
Muon Decay in Flight	< 0.0002		
Pion Decay in Flight	< 0.0001		
Neutron Induced	0.024		
Delayed-Pion Radiative Capture	0.002		
Anti-proton Induced	0.007		
Muon Decay in Orbit	0.15		
Radiative Muon Capture	< 0.001		
μ^- Capt. w/ n Emission	< 0.001		
μ^- Capt. w/ Charged Part. Emission	< 0.001		
Cosmic Ray Muons	0.002		
Electrons from Cosmic Ray Muons	0.002		
Total	0.34		

[‡] Monte Carlo statistics limited.

beam-related prompt backgrounds

beam-related delayed backgrounds

intrinsic physics backgrounds

cosmic-ray and other backgrounds

Expected background events are about 0.34.

COMET Phase-I

COMFT Staged Approach (2012~)

COMET Phase-I

COMET Phase-II

COMET Phase-I

COMET Building at J-PARC

Curved Solenoids for Muon Transport Completed and Delivered!

Two Detectors for COMET Phase-I

CyDet (Cylindrical Detector)

CDC Construction completed!

Schedule of COMET Phase-I and Phase-II

	JFY	2015	2016	2017	2018	2019	2020	2021	2022	2023	
COMET Phase-I	construction										
	data taking										
COMET Phase-II	construction										
	data taking										
COMET Phase-I :						COMET Phase-II :					
2018 ~					2022 ~						
S.E.S. ~ 3x10 ⁻¹⁵				S.	S.E.S. ~ (1.0-2.6)x10 ⁻¹⁷						
(for 150 days						(for 2x10 ⁷ sec					
with 3.2 kW proton beam)				wit	with 56 kW proton beam)						

Other CLFV at COMET

Other Physics at COMET Phase-I

$$\mu^{-} + N(Z) \rightarrow e^{+} + N^{*}(Z-2)$$

Lepton number violation (LNV)

signal signature

$$E_{\mu e^+} = m_{\mu} - B_{\mu} - E_{rec} - \Delta_{Z-2}$$

backgrounds

positrons from photon conversion after radiative muon/pion nuclear capture

Other CLFV Physics at COMET Phase-I

 $\mu^- + e^- \rightarrow e^- + e^-$

- µ⁻e⁻→e⁻e⁻ has two-body final state, although µ⁺→e⁺e⁺e⁻ is a 3body decay.
- A muonium CLFV decay such as µ⁺e⁻→e⁺e⁺ is a 2-body decay having a larger phase space, but the overwrap of µ⁺ and e⁻ is small.

The overwrap between μ^- and e^- is proportional to Z³. For Z=82 (Pb), the overwrap increases by a factor of 5x10⁵ over the muonium. The rate is 10⁻¹⁷ to 10⁻¹⁸.

New Process for Charged Lepton Flavor Violation Searches: $\mu^-e^- \rightarrow e^-e^-$ in a Muonic Atom

Masafumi Koike,^{1,*} Yoshitaka Kuno,^{2,†} Joe Sato,^{1,‡} and Masato Yamanaka^{3,§} ¹Physics Department, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, Saitama 338-8570, Japan ²Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan ³Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan (Received 8 March 2010; published 15 September 2010)

PRISM (~10⁻¹⁹)

- Reduce pions and other background particles in a muon beam
- Reduce energy spread of a muon beam

Phase Rotation

5t

narrow energy spread of muon beam

allows a thinner muon stopping target

図3 RCNPでのPRISM用FFAGリンク

decelerate fast muons (coming earlier) and accele (coming late) by RF with a narrow proton beam.

pure muon beam (pion< 10⁻²⁰)

R&D on the PRISM-FFAG Muon Storage Ring at Osaka University

demonstration of phase rotation has been done.
Summary

- Flavor Physics at Intensity Frontier, in particular CLFV, would give the best opportunity to search for BSM.
- Muon to electron conversion could be one of the important CLFV processes.
- COMET Phase-I is aiming at S.E. sensitivity of 3x10⁻¹⁵.
 - The construction of the beam line started at KEK in 2013.
 - The measurement will start in early 2018-2019.
- COMET (Phase-II) at J-PARC is aiming at S.E. sensitivity of (1.0-2.6)x10⁻¹⁷. It will follow immediately after Phase-I.

my dog, IKU

Summary

my dog, IKU

Merci ありがとう