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αem	running	and	the	Vacuum	Polarization	

Ø Due	to	Vacuum	Polarization	effects	αem(q2)	is	a	
running	parameter		from	its	value	at	vanishing	
momentum	transfer	to	the	effective	q2.	

Ø  The	“Vacuum	Polarization”	function	Π(q2)	can	be	
“absorbed”	in	a	redefinition	of	an	effective	charge:	

Ø  Δa	takes	a	contribution	by	non	perturbative	
hadronic	effects	(Δa(5)had	)	which	exibits	a	different	
behaviour	in	time-like	and	space-like	region	

e2 → e2 (q2 ) = e2

1+ (Π(q2 )−Π(0))
α(q2 ) = α(0)

1−Δα
; Δα = −ℜe Π(q2 )−Π(0)( )

Δα = Δαl + Δα(5)
had + Δαtop 

G. Venanzoni, Seminar at CPT, Marseille, 7 November 2016 



Running	of	αem 

Time-like Space-like 
Very smooth behaviour 
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Measurement	of	αem	running		

•  Measurements of αem(q2)   in space/
time like region can prove the 
running of αem 

•  It can provide a test of “duality” (fare 
way from resonances) 

 
•  It has been done in past by few 

experiments at e+e- colliders by 
comparing a “well-known” QED 
process with some reference 
(obtained from data or MC) 

α(q2 )
α(q0

2 )
!

"
#
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~
Nsignal (q

2 )
Nnorm (q0

2 ) Nsignal can be Bhabha process, muon pairs, etc… 
Nsignal can be Bhabha process, γγ pairs, Theory, etc… 
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Direct	measurement	of	αem	running		
e+e- collider TRISTAN at √s=57.8 GeV,  
 
   

e+e− → µ+µ−

e+e− → e+e−µ+µ−

Spacelike  e+e− → e+e−

e+e− → µ+µ−

10<√-t<54 GeV 

Timelike  

e+e- collider LEP at √s=189 GeV,  using 
Bhabha events 
 
   

Timelike  

Spacelike  
1.3<√-t<2.5 GeV 

1.5<√-t<2.5 GeV 
3.5<√-t<58 GeV 
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A	new	KLOE	measurement	(from	µµγ	with	1.7	F-1)!	

~1%	systematic	error	

arXiv:1609.06631: submitted to PLB 

Good	agreement	with	data	based	compilation		(F.	Jegerlehner)	
>5σ	evidence	of	hadronic	contribution	ρ,ω	to	α(s)	
	



Muon	g-2:	summary	of	the	present	status	

•  E821	experiment	at	BNL	has	generated	enormous	interest:	

	
•  Tantalizing	~3σ	deviation	with	SM	(persistent	since	>10	years):	

  

•  Current	discrepancy	limited	by:		
•  Experimental	uncertaintyà	New	experiments	at	FNAL	and	J-PARC	x4	accuracy	
•  Theoretical	uncertantyà	limited	by	hadronic	effects	

 

aµ
E821 =11659208.9(6.3)×10−10

aµ
SM =11659180.2(4.9)×10−10 (DHMZ )

aµ
E821 − aµ

SM ~ (28±8)×10−10

aµ
SM = aµ

QED + aµ
HAD + aµ

Weak

(0.54	ppm)	

aµ
HLO = (692.3±4.2)10-10  

δaµ/aµ~0.6% 

M.	Davier,	A.	Hoecker,	B.	Malaescu	
and	Z.	Zhang,	Eur.	Phys.	J.	C71	(2011)	

Hadronic	Vacuum	polarization	(HLO)	
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•  New experiment at FNAL (E989) at 
magic momentum, consolidated 
method. 20 x stat. w.r.t. E821. 
Relocate the BNL storage ring to 
FNAL.  

3.3 σ	

(g-2)µ: a new experiment at FNAL (E989) 

→ δaµx4 improvement (0.14ppm)  

E821 
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•  New experiment at FNAL (E989) at 
magic momentum, consolidated 
method. 20 x stat. w.r.t. E821. 
Relocate the BNL storage ring to 
FNAL.  

E989 

3.3 σ	

8 σ	
If the central value remains the same 
⇒ 5-8σ from SM* (enough to claim 
discovery of New Physics!) 

*Depending on the progress on Theory 

Complementary proposal at J-PARC in progress 
 
    

(g-2)µ: a new experiment at FNAL (E989) 

→ δaµx4 improvement (0.14ppm)  



aµ
HLO		calculation,	traditional	way:	time-like	data		

Traditional	way:	based	on	precise	
experimental	(time-like)	data:		

aµ=(g-2)/2 

K(s) = dx x2 (1− x)
x2 + (1− x)(s /m2 )0

1

∫ ~ 1
s

σ
e+e−→hadr

(s) = 4π
s
ImΠhad (s)

aµ
HLO =

1
4π 3 σ

e+e−→hadr
(s)K(s)ds

4mπ
2

∞

∫

•  Main	 contribution	 in	 the	 low	 energy	 region	
(highly	fluctuating!)	

•  Current	 precision	 at	 0.6%	 à	 needs	 to	 be	
reduced	by	a	factor	~2	to	be	competitive	with	
the	new	g-2	experiments	

aµ
HLO = (692.3±4.2)10-10  (DHMZ)  

R = σ had

σ µµ
0
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•  Not	an	easy	task!	
•  >30	channels	to	keep	under	control	(at	

(sub)percent	level)	
•  local	discrepancies	in	main	channels	

(2π	(KLOE/Babar),	K+K-	CMD2/Babar)	
•  Isospin	corrections	for	not	measured	

channels		
•  Treatment	of	narrow	resonances?	(See	

F.	Jegerlehner,	ArXiv:1511.04473)	

Timelike	data	aiming	at	0.2%	on	aµ
HLO?	

M.	Davier,	TAU16	WS	
An	independent/complementary	approach	is	
highly	desirable!	
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Alternative	approach:	aµ
HLO	from	space-like	region	

t =
x2mµ

2

x −1
0 ≤ −t < +∞

x = t
2mµ

2 (1− 1−
4mµ

2

t
); 0 ≤ x <1;

aµ
HLO = −

α
π

(1− x)
0

1

∫ Δαhad (−
x2

1− x
mµ
2 )dx

x	

(1− x)Δαhad (−
x2

1− x
mµ
2 )

(t=0) (t=-∞) 
0.92	

[C.M. Carloni Calame, M. Passera, L. Trentadue, G. Venanzoni  
Phys.Lett. B746 (2015) 325-32]  

•  aµ
HLO	 is	 given	 by	 the	 integral	 of	 the	 curve	

(smooth	behaviour)	
•  It	 requires	 a	 measurement	 of	 the	 hadronic	

contribution	 to	 the	 effective	 electromagnetic	
coupling	 	 in	 the	 space-like	 region	 Δαhad(t)	
(t=q2<0)	

•  It	 enhances	 the	 contribution	 from	 low	 q2	

region		(below	0.11	GeV2)	
•  Its	precision	is	determined	by	the	uncertainty	

on	Δαhad	(t)	in	this	region	

	t=-0.11	GeV2	
(~330	MeV)		

t=q2<0 α(t) 
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Two	experimental	approaches:	
1)  Bhabha	scattering	at	flavors	

factories	
2)  High	energy	muon	beam	on	e-	

target	
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Using	Bhabha	at	small	angle	(to	emphasize	t-channel	contribution)	
to	extract	Δα:	

α(t)
α(0)
!

"
#

$

%
&

2

~ dσ ee→ee(t)
dσMC

0 (t)
Where	dσ0

MC	is	the	MC	prediction	for	Bhabha	
process	with	α(t)=α(0),	and	there	are	corrections	
due	to	RC…	
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α(t)
α(0)
#

$
%

&

'
(

−1

−Δαlept (t)

Which	experimental	accuracy	we	are	aiming	at?	
δΔαhad~1/2	fractional	accuracy	on	dσ(t)/dσ0

MC(t).  
 
If	we	assume	to	measure	δΔαhad at	5%	at	the	peak	of	the	integrand (Δαhad ~10-3 

at x=0.92) à fractional	accuracy	on	dσ(t)/dσ0
MC(t) ~ 10-4 !  

Very	challenging	measurement	(one	order	of	magnitude	improvement	respect	to	
date)	for	systematic	error	

Δαlep(t) theoretically	well	known!	

Bhabha	scattering	at	flavour	factories:	
experimental	considerations	
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Experimental	considerations	-	II	
Most	of	the	region	(up	to	x~0.98)	can	be	covered	with	a	low	energy	
machine	(like	Dafne/VEPP-2000	or	tau/charm-B-factories)	

t = −ssin2(ϑ
2
)

x 

Example:	
Covering	up	to	600	at	√s=1	
GeV	can	arrive	at	x=	0.95(!)	
	
A	different	situation	can	be	
obtained	at	tau/charm/	B-
factories	(and	at	future	ILC/
FCCee	machines)		where	
smaller	angles	(below	20o)	
are	needed	
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Statistical	consideration	
10-4	accuracy	on	Bhabha	cross	section	requires	at	least	108	events	
which	at	20o	mean	at	least:	
	
	
•  O(1)	s-1	@	1	GeV	

•  O(10)	s-1	@	3	GeV	

•  O(100)	s-1	@	10	GeV	
dσ

/d
θ(

pb
/d

eg
) 

These	luminosities	are	within	
reach	at	flavour	factories!	
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Additional	considerations:	s-channel	
At	low	energy	(<10	GeV)		above	100	there	is	still	a	sizeable	
contribution	from	s-channel.	
At	LO	no	difficulty	to	deconvolute	the	cross	section	for	the	s-
channel	

However	this	picture	changes	with	Rad.	Corr.	

s=1 GeV 
10o<θ<170o 

Test with Babayaga: 

dσborn/dt=1.52 mb/GeV2 
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Additional	considerations:	Rad.	Corr.	
A	Monte	Carlo	procedure	has	been	developed	to	check	if	Δαhad(t)	
can	be	obtained	by	a	minimization	procedure	with	a	different		
Δαhad(t)’	inside	
	

Δαhad(t)  is obtained 
with<10-4 error ! 

à  
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Additional	consideration:	Normalization	

Option	1)	looks	better	to	us	as	some	of	the	common	systematics	
cancel	in	the	measurement	!	

To	compare	Bhabha	absolute	cross	
section	from	data	with	MC	we	need	
Luminosity	of	the	machine.	
Two	possibilities:	
1)  Use	Bhabha	at	very	small	angle	

where	the	uncertainty	on	Δαhad	
can	be	neglected	(for	example	at	
Ebeam=1	GeV		and	θ=5o,	Δαhad	
~10-5	).	

2)  Use	a	process	with	Δαhad=0,	like					
e+e-	àγγ.	However	very	difficult	to	
determine	it	at	10-4	accuracy.	
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What	can	be	done	a	KLOE/KLOE2?	

20o 

100o 

We did the following simulation: 
•  20 points between 20o<θ<100o (0.03<-t<0.59 

GeV2; 0.78<x<0.98) @ √s=1 GeV 

•  For each point δσe+e-/σe+e-~10-4 (stat and syst)  
•  We fit Δαhad(t) using our points+ pQCD for –t>10 

GeV2 with a polinomial function (like lattice) 

 



We did the following simulation: 
•  20 points between 20o<θ<100o (0.03<-t<0.59 

GeV2; 0.78<x<0.98) @ √s=1 GeV 

•  For each point δσe+e-/σe+e-~10-4 (stat and syst)  
•  We fit Δαhad(t) using our points+ pQCD for –t>10 

GeV2 with a polinomial function (like lattice) 

 

δaµ
HLO~3%stat⊕ 7%syst 

(preliminary) 

20o 

100o 

What	can	be	done	a	KLOE/KLOE2?	



What	can	be	done	with	a	dedicated	detector	(at	1-2	GeV)	
Calorimeter 

Tracking 
detector 
(Cilindrical 
gem?) 

e+ e- 

•  A	dedicated	detector	with	a	coverage	at	
small	angle	(<	5o)	would	allow	to	use	small	
angle	Bhabha	for	the	normalization	(N0).	

•  The	running	of		a	can	be	obtained	as	
“simple”	ratio	Ni/N0	where	Ni	is	the	Bhabha	
events	in	the	Δθi	bin.		

•  One	can	achieve	an	error	~10-5	(stat+syst)	
on	this	ratio	

	
	

Same	simulation	as	in	KLOE	with	
20	points	and	10-5	(stat	and	syst)	
error	for	each	point	
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•  A	dedicated	detector	with	a	coverage	at	
small	angle	(<	5o)	would	allow	to	use	small	
angle	Bhabha	for	the	normalization	(N0).	

•  The	running	of		a	can	be	obtained	as	
“simple”	ratio	Ni/N0	where	Ni	is	the	Bhabha	
events	in	the	Δθi	bin.		

•  One	can	achieve	an	error	~10-5	(stat+syst)	
on	this	ratio	

	
	

δaµ
HLO~0.3%stat⊕ 1%syst 

(preliminary) 



High	precision	measurement	of	aµ
HLO	with	a	

150	 GeV	 µ	 beam	 on	 Be	 target	 at	 CERN	
(through	the	elastic	scattering	µe	àµ	e)	
 

t=q2<0 
µ	 e	

µ	 e	

µ	

e	

target 

α(t)
α0

2

=
1

1−Δα(t)

2

150 GeV 
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Why	measuring	Δαhad(t)	with	a	150	GeV	µ	beam	
on	e-	target	?	

	
•  µ	e	!µ	e		is	pure	t-channel	(at	LO)	

•  	It	gives	0<-t<0.161	GeV2		(0<x<0.93)	

•  The	kinematics	is	very	simple:		t=-2meEe		

•  High	boosted	system	gives	access	to	all	
angles	(t)	in	the	cms	region		

•  It	 allows	 using	 the	 same	 detector	 for	
signal	and	normalization		

•  Events	 at	 x~0.3	 (t~-10-3	 GeV2)	 can	 be	
used	as	normalization	(Δαhad(t)	<10-5)	

		

normalization	 signal	

It	looks	an	ideal	process!	

tmax=-0.11GeV2	

θeLAB<32 mrad (Ee>1 GeV) 
 θµ

LAB<5 mrad Δαhad (x)

x	

x	

(1− x)Δαhad (x)



Detector	considerations	I  
•  In	 order	 to	 be	 competitive	 with	 aµ

HLO	 from	time-like	 data	 (0.6%	
error)	a	subpercent	uncertainty		on	aµ

HLO	is	required	

	

	
•  δΔαhad/Δαhad	at	0.5%	at	peak	region	(x=0.92,	Δahad~10-3)à

	δN(t)/N(t)~10-5	
	

•  Such	 an	 accuracy	 demands	 high	 statistics	 keeping	 low	
systematic	errors!	

•  Dense	 (active)	 target	 would	 provide	 the	 required	 statistics	 at	 a	
price		of	an	unavoidable	large	multiple	scattering	and	background	
process	(pair	production,	bremsstrahlung,	nuclear	interaction)	

•  Our	choice	goes	to	 light	Z	 (Be)	target	with	a	modular	apparatus	
which	minimizes	systematic	errors	

	
 

δΔαhad (t) ~ 0.5
δNdata (t)
Ndata (t)

⎛

⎝
⎜

⎞

⎠
⎟

2

+
δNnorm (t0 )
Nnorm (t0 )

⎛

⎝
⎜

⎞

⎠
⎟

2

+
δRMC

RMC

⎛

⎝
⎜

⎞

⎠
⎟

2

+ corr. terms

RMC =
dσ 0

MC (t)
dσ 0

MC (t0 )
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•  Modular	 apparatus:	 20	 layers	 of	 3	 cm	 Be	
(target),	each	coupled	to	1	m	distant	Si	(0.3	mm)	
planes.	It	provides	a	0.02	mrad	resolution	on	the	
scattering	angle	

•  The	t=q2	<0	of	 the	 interaction	 is	determined	by	
the	 electron	 (or	 muon)	 scattering	 angle	 (a`	 la	
NA7)	

	
•  ECAL	 and	 µ	 Detector	 located	 downstream	 to	

solve	PID	ambiguity	below	5	mrad.	Above	that,	
angular	measurement	gives	correct	PID	

•  It	 provides	 uniform	 full	 acceptance,	 with	 the	
potential	 to	 keep	 the	 systematic	 errors	 at	 10-5	
(main	 effect	 is	 the	 multiple	 scattering	 for	
normalization	which	can	be	studied	by	data)	

•  Statistical	 considerations	 show	 that	 a	 0.3%	
error	 can	 be	 achieved	 on	 aµ

HLO	 in	 2	 years	 of	
data	taking	with	2x107	µ/s	

	

θµ	

θe	

x	

(1− x)Δαhad (x)

ECAL µ ID 

Si Be Si Si Be Si 

ß1mà 

ß 1m  à Detector	considerations	II  



•  A	 simulation	 of	 the	 detector	 based	 on	
GEANT-4	has	started	

•  µ-e	elastic	 scattering	events	have	a	clear	
topology	

	
•  Background	 events	 can	 be	 easily	

identified	 and	 rejected	 in	 the	 θµ	 vs	 θe	
plane	

•  Multiple	scattering	can	be	studied	by	data	
as	 it	 breaks	 the	 µ-e	 two-body	 angular	
correlation,	 moving	 events	 out	 of	 the	
kinematic	 constraint.	 It	 also	 causes	
acoplanarity,	while	 two-body	events	 are	
planar.	

•  Simulation	 will	 help	 to	 optimize	 the	
detector	 (i.e.	 additional	 thin	 layer(s)	 can	
be	placed	for	luminosity)	

 

e+e-	pairs	

First	simulation 

θe	

θµ	



Comparison	with	Lattice	

F. Jegerlehner, talk at KLOE2 Physics Workshop, Frascati, 28/10/16  



Comparison	of	our	method	with	Lattice	(as	it	is	now)	

Interplay	between	our	data	and	lattice	calculation!		



•  A	new	approach	to	determine	the	full	contribution	to	aµ
HLO,	based	on	the	

measurement	of	Δαhad(t)	in	space-like	region	has	been	presented.	

•  Two	experimental	proposals	with	different	systematics:	
•  from	Bhabha	scattering	at	low	energy	colliders:	difficult	to	control	the	

systematic	 uncertainties	 at	 10-5	 in	 current	 configurations	 (it	 would	
need	dedicated	detectors	at	present	flavour	factories)	

•  	from	the	scattering	µ	e	!µ	e	using	a	high	energy	muon	beam	(E~150	
GeV)	 available	 in	 the	 North	 Area	 at	 CERN	 on	 electron	 target:	 very	
promising	 to	 reach	 the	 per	 mill	 goal!	 A	 test	 with	 a	 single	 module	
could	provide	a	proof-of-concept	of	the	proposed	method.		

	
•  Theory	 side:	 high	 precision	 MC	 must	 be	 developed	 to	 control	 the	

systematics.	The	present	knowledge	of	QED	Radiative	Corrections	is	at	a	
few	10-4	 level;	work	is	 in	progress	to	extend	MC	used	at	flavour	factories	
(BabaYaga)	to	µe	scattering	with	expected	accuracy	at	 (better	than)	10-5	
on	cross	section	ratios	

Conclusion			

G. Venanzoni, Seminar at CPT, Marseille, 7 November 2016 
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Real	Collabora*on	/	Virtual	Ring	2yrs	ago	

E989	Collaboration	
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How	to		measure		g-2	in	a	storage	ring	

(1) Polarized muons 
 ~97% polarized for forward decays 

 

(2) Precession proportional to (g-2)  
  
  

(3) Pµ magic momentum = 3.094 GeV/c 
  

 

 E field doesn’t affect muon spin when γ = 29.3 
(4) Parity violation in the decay gives 

average spin direction 
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G. Venanzoni for the New Muon (g-2) Collaboration –EPS15, 24 July 2015 
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Measure 2 quantities!



•  Consolidated	method	
•  More	muons	(x20)	
•  Reduced	systematics	(ring	and	detector)	
•  New	crew	

•  E821 at Brookhaven 
 

•  E989 at Fermilab 

G. Venanzoni for the New Muon (g-2) Collaboration –EPS15, 24 July 2015 

4	key	elements	for	E989	at	FNAL	

0.7ωa⊕ 0.7ωp 



What	we	need	to	do…	

•  4 Major Steps 
–  Transport BNL storage ring and associated equipment to Fermilab  
–  Construct a new experimental hall to house the storage ring 
–  Modify anti-proton complex to provide a high-purity, intense beam of 3.094 

GeV/c muons 
–  Upgrade various subsystems (injection devices, field monitoring, detectors & 

DAQ) to meet requirements for rates and systematics 

•  Overall plan to achieve a factor of four improvement in precision 
–  Increase statistics by x 21 to reduce stat error from 0.46 ppm to 0.1 ppm 
–  Reduce systematics on ωa from 0.2 ppm to 0.07 ppm  
–  Reduce systematics on ωp from 0.17 ppm to 0.07 ppm  

41	

✔	
✔	

70%	complete	

60%	complete	



Fermilab	Muon	Campus	Vision,	circa	2012	
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•  Convert FNAL anti-proton source to produce customized muon 
beams for experiments like Muon g-2 and Mu2e!

G. Venanzoni,  CSN1, 4 March 2016 



Muon	Campus	Reality	–	View	from	
Wilson	Hall	Today		
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•  Muon g-2 hall complete, BNL storage ring installed and operational!
•  Mu2e civil construction complete, building outfitting underway!
•  Conversion of accelerator complex to muon source nearing completion!

G. Venanzoni,  CSN1, 4 March 2016 



Ring Reassembling (July 2014 – June 2015) 

44 
Achieved full power in September 2015 



First	challenge	-	statistics	

45 

Recycler Ring!

Delivery Ring!

Achieving required statistics is a 
primary concern 
 - Need a factor 21 more statistics 
than BNL 
 - Beam power reduced by 4 
   

Need a factor of 85 improvement in 
integrated beam coming from many 
other factors 
 - Collection of pions from Li lens 
 - Capture of decay muons in FODO 
channel 
 - pπ closer to magic momentum  
 - Longer decay channel 
 - Increased injection efficiency 
 - Earlier start time of fits 
 - Longer runtime (~18 months for 
production running + systematics) 
 
 
 
 
 
 
 



A	pure	muon	beam	of	3.1	GeV	

46 

No hadronic flash 
-  Pions all decay 
-  Protons removed by a DR kicker 

Forward muons collected 
•  95% polarized 
•  ~800,000 µ+/fill (δP/P 2%) at ring 

8 GeV Protons 

Pions 

Muons 

4 bunches 

All protons are “excess” from 
those used for NOvA ν 
Program  

Possible Cycle: 16 Shots / 1.33 s Cycle 



Beam	transported	from	Recycler	thru	P1,	P2	lines!	

7/28/2016" M Convery | Accelerator Overview"47"

g-2	accelerator	commissioning	milestones	



7/28/2016" M Convery | Accelerator Overview"48"

g-2	accelerator	commissioning	milestones	

Inizio	presa	da*	autunno	2017	

Data	taking	will	start	in	~1	year	from	now	



Second	challenge	–	ωa	systematics	

49 

•  Tackling each of the major systematic errors with knowledge 
gained from BNL E821 and improved hardware"



New	detector	systems	to	be	installed	by	March	2017	

•  Calorimeters	24	6x9	PbF2	crystal	arrays	with	SiPM	
readout,	segmentation	to	reduce	pileup	

•  New	 electronics	 and	 DAQ,	 800MHz	WFDs	 and	 a	
greatly	reduced	threshold	

•  Three	 1500	 channel	 straw	 trackers	 to	 precisely	
monitor	 properties	 of	 stored	 muon	 beam	 via	
tracking	of	Michel	decay	positrons,	 significant	UK	
contributions	

•  New	laser	calibration	system	from	INFN	crucial	for	
untangling	gain	from	other	systematics	
	

50 

Top view of 1 of 12 vacuum chambers  

800 MSPS Digitizers 
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Top view of 1 of 12 vacuum chambers  

800 MSPS Digitizers 
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Schedule	

Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar 
2015 2016 2017 

Field Shimming 
Prepare vacuum chambers/align cages w/ rails, quad, kicker plates 

Prepare old inflector/install infrastructure 

Install 
Chambers 

Construct 1st full calorimeter 

Assemble kicker plates, cages, pulsers 

Construct & install quad pulsed power supplies, feedthroughs, connections 

Construct and test upgraded NMR trolley & absolute calibration 

He leak repair 
(magnet warm) 

Install final focus on AP0 target 

Install/test 
old inflector 

Final test 
quads 

Receive calo crystals/SiPMs 

Install Blumleins, PS, & kickers Test 
kickers 

Test NMR 
systems 

Install trolley & 
calibration 

SLAC 
test 

beam Electronics & DAQ development 
WFD production & QC 

Calo production & installation 
DAQ installation & testing 

Laser system installation 
2 trackers assembly & installation 

Dry runs & 
mock data 
challenge 

Electronics install 

Construct M2/M3 beamlines from AP0 to Delivery Ring 
Modify AP0 Li lens and PMAG PS for g-2 rep rate, replace beam dump 

Install Delivery Ring injection, transport, and extraction 
Construct M4/M5 beamlines from DR into g-2 ring 

Commission 
primary proton 
beam to AP0 

G.	Venanzoni,		CSN1,	4	March	2016	
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•  Need to know the average field observed by a muon in the storage ring 
absolutely to better than 70 ppb, many hardware improvements 

•  Very challenging…first major step is making the field as uniform as possible 
–  Has been our main thrust over the last 9 months 

Third	challenge	–	ωp	systematics	



Field	stability	and	uniformity	improvements	

•  Environmental 
–  2’9” heavily-reinforced floor 

installed on 12’ deep excavation 
of undisturbed soil 

–  Temperature control to +/- 1C 

•  Construction tolerances 
§  26 ton pieces of yoke steel (30 of them) 

placed to 125 micron tolerance 
§  Pole pieces aligned to 25 micron 

•  10 months of interactively shimming B-
field with bits of steel and current loops 
(just ended last month) 

54 G. Venanzoni,  CSN1, 4 March 2016 



Progress	on	Field	

55 

4− 3− 2− 1− 0 1 2 3 4

4−

3−

2−

1−

0

1

2

3

4

4−

2−

0

2

4

.

.
.

.

.
.

.

.

.

..
.

.

.

.

.
. . .

.

.

.

.

.
.

B-field (ppm)

-0.02 -0.57
-0.70 3.84
-0.76 0.56
0.44 -1.61

Quad
Sext
Octu
Decu

Norm Skew

-0.0Dipole

Azimuthally Averaged Map"

Oct 2015 ! Aug 2016!

       R-R0(cm)!

Ve
rt

ic
al

 (c
m

)!

Goal 

Oct 2015  Aug 2016 4− 3− 2− 1− 0 1 2 3 4

4−

3−

2−

1−

0

1

2

3

4

4−

2−

0

2

4

.

.
.

.

.
.

.

.

.

..
.

.

.

.

.
. . .

.

.

.

.

.
.

B-field (ppm)

-0.02 -0.57
-0.70 3.84
-0.76 0.56
0.44 -1.61

Quad
Sext
Octu
Decu

Norm Skew

-0.0Dipole

4− 3− 2− 1− 0 1 2 3 4

4−

3−

2−

1−

0

1

2

3

4

4−

2−

0

2

4

.

.
.

.

.
.

.

.

.

..
.

.

.

.

.
. . .

.

.

.

.

.
.

B-field (ppm)

-0.02 -0.57
-0.70 3.84
-0.76 0.56
0.44 -1.61

Quad
Sext
Octu
Decu

Norm Skew

-0.0Dipole

~1400  

ppm 
~200  

ppm 

~50 
ppm 

goal 

G. Venanzoni,  CSN1, 4 March 2016 



Oct 2015 ! Aug 2016!
Goal 

~1400  

ppm 
~200  

ppm 

~50 
ppm 

goal •  Magnet achieved full power September 21, 2015  
•  Field started out with a peak variation of 1400 ppm 
•  June 2016 peak to peak variation was reduced to 200 ppm 
•  The goal of shimming is 50 ppm with a muon weighted 

systematic uncertainty of 70 ppb 
•  BNL achieved 100 ppm with an averaged field uniformity of 

+- 1ppm. They estimated their systematic uncertainty of 140 
ppb. We would like to improve of a factor 2! 

Progress	on	Field	

G. Venanzoni,  CSN1, 4 March 2016 



SPARES 



L. Trentadue, Kloe2 Physics Workshop, 
Frascati, 28/10/16 



Lattice data points 



Considerations on a dedicated detector 

•  The detector should be hermetic with a very good momentum 
resolution and rejection of background (γγ, µµ, hadrons). It 
should allow to identify the Bhabha with an accuracy < 10-4.  

•  The luminosity shouldn’t be a problem. The design of the 
detector should depend on the energy of the machine 

x 

dσ
/d
θ(

pb
/d

eg
) 



Example: measurement at √s=2 GeV 
•  The region 0.2<x<0.98 can be explored at √s=2 GeV with 2o<θ<45o (for 

x>0.98 pQCD could be used) 
•  Normalization can be provided by Bhabha at very small angle (2o<θ<5o) 

where  Δαhad<10-5 (1% of the Δαhad(x=0.92)) and statistics is large 
•  L=1032 would allow to do a  measurement of aµ

HLO<1% within 1 year 
(statistically) 
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G. Venanzoni, LEPP Conference, Mainz, 5 April 2016 



€ 

aµ =
(gµ − 2)
2

•  Long established discrepancy (>3σ) between 
SM prediction and BNL E821 exp. 

• Theoretical error δaµ
SM (~6x10-10)  dominated by 

HLO VP (4÷5x10-10) and HLbL ([2.5÷4]x10-10). 
A twofold improvement on δaµ

SM from 2001 
(thanks to new e+e- measurements)! 

• Experimental error  δaµ
EXP ~6 x10-10(E821).  

Plan to reduce it to 1.5 10-10 by the new g-2 
experiments at FNAL and J-PARC. 

 HLO VP H LbL 

T.Teubner, PHIPSI08	

aµ
HLO = (690.9±4.4)10-10  

 [Eidelman, TAU08] 
aµ

HLbL =(10.5±2.6)10-10  
[Prades, dR&V. 08] 
(11 ±4)10-10  (Jegerlehner, Nyffler) 
 δaµ

HLO ~0.7% 

 Muon anomaly 

In 2001 aµ
EXP-aµ

TH=(23±16)•10-10	δaµ
HLbL ~25-40% 



aµ
TH = aµ

QED + aµ
HAD + aµ

Weak + aµ
???

Your preferred 
BSM theory 

X 

SUSY? Dark Photons? 

[Endo,Hamaguchi,Iwamoto,Yoshinaga ’13] 

Δaµ=aµ
exp-aµ

SM=288(63)(49)x10-11  ~2 aµ
Weak (154x10-11 )  

g-2 
1σ	

2σ	

LHC 
exclusion 
limits 

(BNL) (SM) 

New Physics? 

G. Venanzoni, Seminar at LNF, Frascati, 20 May 2015 



•  New experiment at FNAL (E989) at 
magic momentum, consolidated 
method. 20 x stat. w.r.t. E821. 
Relocate the BNL storage ring to 
FNAL.  

E989 

3.3 σ	

8 σ	
If the central value remains the same 
⇒ 5-8σ from SM* (enough to claim 
discovery of New Physics!) 

*Depending on the progress on Theory 

Alternative proposal at JPARC in progress [H. Iinuma JPC 295 (2011) 012032] 

 
 
    

(g-2)µ: a new experiment at FNAL (E989) 

→ δaµx4 improvement (0.14ppm)  



Behaviors 

x 

(1− x)Δαhad (−
x2

1− x
mµ
2 )

Δα~log(-t) 
Dominated at low |t| by 
leptonic contribution 

~10-4 

(t=0) (t=-∞) 
0.92 

High |t|-values are depressed by 1-x 
(a kind of analogy with time-like region) 
The integrand is peaked at ~x=0.92  
àt=-0.11 GeV2 (~0.33 GeV) for which 
Δαhad(0.92)~ 10-3    A. Arbuzov et al., Eur. Phys. J. C 34 (2004) 267 

G. Venanzoni, Seminar at LNF, Frascati, 20 May 2015 



x vs t behaviour 

30 MeV 100 MeV 320 MeV 1 GeV 

∞ 
xà1 
t à 

xà0  
tà0 



Measurement of DAFNE Luminosity with 
KLOE/KLOE-2 at 10-4? 

Adding in quadrature:     0.3 %	

(can be improved by a factor 10?) 

F. Ambrosino et al [KLOE] 

G. Venanzoni, Seminar at LNF, Frascati, 20 May 2015 



Polar angle systematics 

ü  global agreement is very good 

but the cut occurs in a steep    
region of the distributions  
   ⇒  estimate of border 	
         mismatches 

ü  after normalizing MC to make 
it coincide with data in the 
region  65ο < θ < 115ο, we 
estimate as a systematic error: 

∼ 0.25%	

Can be improved at 10-4? 

From F. Nguyen 2006 

G. Venanzoni, Seminar at LNF, Frascati, 20 May 2015 



G.Abbiendi 69 

Giovanni Abbiendi 
INFN - Bologna 

G. Venanzoni, Seminar at LNF, Frascati, 20 May 2015 

A measurement of the Luminosity at 10-4 at LEP 



Frascati, 7 June 2006 G.Abbiendi 70 

Small-angle Bhabha scattering in OPAL 

z IP 

SW - Right SW - Left 
e- 

e+ 

γ 

2.5 m 

6.
2 

cm
 

14
.2

 c
m

 
ER  RR  ϕR EL  RL  ϕL 

2 cylindrical calorimeters encircling the beam pipe  
at ± 2.5 m from the Interaction Point 

19 Silicon layers 

18 Tungsten layers 
 Total Depth 22 X0  
       (14 cm) 

Sensitive radius: 6.2 – 14.2 cm, 
corresponding to scattering angle 
of 25 – 58 mrad from the beam line 

Each detector layer divided 
into 16 overlapping wedges 

€ 

e+e− → e+e−    s ≈ 91.2 GeV



Frascati, 7 June 2006 G.Abbiendi 71 

Final Error on Luminosity 

Total Experimental Systematic Error :      3.4 × 10-4 

After all the effort on Radial reconstruction the dominant systematic 
error is related to Energy (mostly tail in the E response and nonlinearity)  
Quantitatively:                    (OPAL Collaboration, Eur.Phys.J. C14 (2000) 373) 
 

Systematic  
Error (×10-4) 

Energy 1.8 

Inner Anchor 1.4 

Radial Metrology 1.4 

Theoretical Error on Bhabha cross section:  5.4 × 10-4 


