Sterile : Short Baseline Neutrino Experiments

Frederic Yermia

yermia@subatech.in2p3.fr SUBATECH (Université de Nantes, CNRS/IN2P3, Mines Nantes)

SFP, LPNHE

- Anomalies and sterile hypothesis
- Disappearance experiments: Testing antineutrino deficit and potential oscillation
- Experimental parameters and environment of a Short Baseline experiment
- Short Baseline reactor experiments
- Conclusion

Physics Beyond the 3- ν SM?

• Experimental anomalies ranging in significance $(2.8-3.8 \sigma)$ have been reported over the past 20 years from a variety of experiments studying neutrinos at baselines less than 1 km.

Experiment	Type	Channel	Significance	
LSND	DAR	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \ CC$	3.8σ	
MiniBooNE	SBL accelerator	$\nu_{\mu} \rightarrow \nu_{e} \ CC$	3.4σ	$\rightarrow \nu_{\mu} \rightarrow \nu_{\rho}$ appearance
MiniBooNE	SBL accelerator	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \ CC$	2.8σ	μ ει
GALLEX/SAGE	Source - e capture	ν_e disappearance	2.8σ	
Reactors	Beta-decay	$\bar{\nu}_e$ disappearance	3.0σ	 v_e uisappearance

K. N. Abazajian et al. "Light Sterile Neutrinos: A Whitepaper", arXiv:1204.5379 [hep-ph], (2012)

• Combined no oscillation disfavored at more than 99.9% C.L. (3.3 σ) Common interpretation is as evidence for one or more additional, mostly "sterile" neutrino states driving oscillations at $\Delta m_{new}^2 \approx 1 \text{ eV}^2$ and a relatively small $\sin^2(2\theta_{new})$.

• Confirmation of the sterile neutrino hypothesis would be a major discovery, physics beyond the SM

• A definite null result would settle a long-standing open question with possible implications in future experiments (better predictions) and in nuclear physics.

Reactor Anomaly

Sterile neutrinos

The measured anomalies can be explained by a sterile neutrino state with Δm^2 around eV^2

Sterile neutrino white paper arXiv:1204.5379

J. Kopp et al., hep/ph: 1303.3011

Two techniques in ν_{e} disappearance to address this on a short timescale:

I. Large source, large detector experiments

2. very short baseline [5-20] m reactor experiments

Recent reactor data: Anomalous Reactor Spectrum Results

- Distortion in e+ spectrum observed / predicted at all three experiments (Double Chooz, Daya Bay, RENO)
 - local excess in [4,6] MeV window in Daya Bay data
 - no effect on θ_{13} measurement and reactor anomaly
 - Origin of the excess to be understood: is it a physics effect or a bias in the predictions?

DOUBLE CHOOZ Ratio data/non oscillation predictions

Distortion analysis with ND rate+shape (A. Cabrera CERN seminar 09/16)

Test the existence of features not biased by shape-only assumption (i.e. smaller errors)

shape-only≈Bugey4 (consistency of Bugey4?)

non-statical features
which is deficit?
which excess?
which is OK?
⇒ less evident!!

careful analysis before stating the "trouble region" is bump problem really? (maybe no bump whatsoever)

(bias question \rightarrow bias answer)

Ongoing & Future Short-Baseline Experiments

Accelerator Decay-in-Flight:

Fermilab Short-Baseline (SBND, MicroBooNE, ICARUS), nuSTORM

Accelerator Decay-at-Rest:

OscSNS, IsoDAR, KDAR/Kpipe, JSNS²

Sterile Searches that are not Short-Basline:

OPERA, IceCube, MINOS+, Plank, KATRIN

Radioactive Neutrino Sources:

SOX

Reactor Experiments:

CHANDLER, DANSS, Neutrino-4, NEOS, Prospect, NuLAT, Stereo, Solid

Borexino / SOX

Borexino designed to detect solar neutrinos from ⁷Be via elastic scattering off electrons in highly purified liquid scintillator

Detection via scintillation light:
✓ Very low energy threshold
✓ Good position reconstruction
✓ Good energy resolution

BUT...

✓ No direction measurement
 ✓ The v induced events can't be distinguished from other background events

due to natural radioactivity

Extreme radiopurity of the scintillator is a must!

The ¹⁴⁴Ce source

0.5

1.5 2 2.5

44_{Nd}

- Rate analysis: standard disappearance experiment
- Shape analysis: waves inside Borexino!

$$P_{ee} = 1 - \sin^2 2\theta_{14} \sin^2 \frac{1.27 \Delta m_{14}^2 (eV^2) L(m)}{E(MeV)}$$

Short Baseline at reactors

Look for rate and energy variations

Data scarce at short distance :

Need better experiments and other data points !

- Good energy resolution experiment
- Good position resolution
- Control of background is key for best sensitivity

Key Experimental Parameters

Reactor and detector parameters relevant for covering the suggested parameter space. K.M. Heeger et al., arXiv:1212.2182v1

Total Statistics: Highest possible power and a detector with the highest possible efficiency **Detector length:** A large detector length increases an experiment's ability to resolve oscillations with position in addition to spectral distortions in energy.

Detector-reactor distance: The closest reactor-detector distance r_{min} determines the Δm^2 range of highest sensitivity.

Detector resolution: Oscillations at higher Δm^2 are only visible if resolutions and bin sizing are smaller than the oscillation itself.

Background: The S:B ratio is crucial for the success of the experiment. Small S:B ratios make it difficult to resolve oscillation effects above statistical background fluctuations and uncorrelated background uncertainties

Environmental conditions: Backgrounds

- Inverse beta decay detection
- Low overburden
 - Large muon induced background (FN), difficult to shield
- Close to the reactor core
 - High reactor neutron and gamma accidental background
 - difference reactor ON/OFF data not enough
 - Reactor background conditions can change over the data taking at research reactors
- need high background rejection power, Control of background is key !
 - limit passive shielding to low Z to avoid regeneration of background

Correlated background from fast neutrons

SBL Reactor experiments

Detection principle: Inverse Beta Decay

Neutron capture: Gd/Li⁶

Site: research reactor or power reactor

SBL reactor experiments

Experiment		Reactor Power/Fuel	Overburden (mwe)	Detection Material	Segmentation	Optical Readout	Particle ID Capability
DANSS		3000 MW	~50	Inhomogeneous	2D, ~5mm	WLS fibers.	Topology only
(Russia)	R TOTAL	EU fuel		PS & Gd sheets			
NEOS		2800 MW	~20	Homogeneous	none	Direct double	recoil PSD only
(South Korea)		LEU fuel		Gd-doped LS		ended PMT	
nuLat		40 MW	few	Homogeneous	Quasi-3D, 5cm,	Direct PMT	Topology, recoil
(USA)		²³⁵ U fuel		⁶ Li doped PS	3-axis Opt. Latt		& capture PSD
Neutrino4	ALALA E	100 MW	~10	Homogeneous	2D, ~10cm	Direct single	Topology only
(Russia)		²³⁵ U fuel		Gd-doped LS		ended PMT	
PROSPECT		85 MW	few	Homogeneous	2D, 15cm	Direct double	Topology, recoil
(USA)		²³⁵ U fuel		°Li-doped LS		ended PMT	& capture PSD
SoLid		72 MW	~10	Inhomogeneous	Quasi-3D, 5cm	WLS fibers	topology,
(UK Fr Bel US)		²³⁵ U fuel		[°] LiZnS & PS	multiplex		capture PSD
Chandler	10	72 MW	~10	Inhomogeneous	Quasi-3D, 5cm,	Direct PMT/	topology,
(USA)	-	²³³ U fuel		"LiZnS & PS	2-axis Opt. Latt	WLS Scint.	capture PSD
Stereo 📷	Annang Manual	57 MW	~15	Homogeneous	1D, 25cm	Direct single	recoil PSD
(France)		²³³ U fuel		Gd-doped LS		ended PMT	

Different technolgies, sites, features...

Liquid Scintillator unique target +Gd-Loaded

Neutrino-4, NEOS

NEUTRINO-4: 1.5t unique volume target

SM-3 Reactor Dimitrograd, Russia (100 MW)

- Dedicated site at SM-3
- Probe oscillation effect with distance (1/R²)
- homogenous detector design, 1.5 tonnes
- Challenging background conditions
 - 60 tonnes of shielding
- First run with 1 detector unit (400L)
- Intensive background studies vs distance: found variations up to 14%

NEUTRINO-4

- first measurement in 1/R²
 - IBD efficiency 15%, ~130 candidates/day
- next phase:
 - full scale system
 - active shielding around passive shielding

Status of Experiment NEUTRINO-4 Search for Sterile Neutrino

A Serebrov¹, V Ivochkin¹, R Samoilov¹, A Fomin¹, A Polyushkin¹, V Zinoviev¹, P Neustroev¹, V Golovtsov¹, A Chernyj¹, O Zherebtsov¹, V Martemyanov², V Tarasenkov², V Aleshin², A Petelin³, A Izhutov³, A Tuzov³, S Sazontov³,

In the frame of the available statistical accuracy it is not revealed if there are any reliable deviations of antineutrino flux distance dependence from the law I/R^2 where R – distance from the center of reactor core

Data taking still ongoing for more precice measurement !

NEOS: Neutrino Experiment for Oscillation at Short baseline

- Hanbit NPP in Younggwang, Korea
- · 2.8 GWt commercial reactor
- core size: 3.1 m (ф) X 3.8 m (H)
- LEU fuel (~4.6% ²³⁵U)
- Tendon Gallery: 24 m baseline, ~20 m.w.e overburden

Reactor Unit 5, Hanbit NPP in Younggwang, Korea (Reno Site)

NEOS - detector

- I000 L of 0.5 Gd LS, homogeneous
 LAB+DIN for better PSD performance
- 38 8" PMTs for the active target
- 10 cm borated PE, 10 cm Pb passive shields
- muon counters for active veto
- DAQ: 500 MS/s FADC for waveform analysis

NEOS - status

- data taking completed : Aug 2015 May 2016
 ~180 (46) days with the reactor on (off)
 - ~2000 (80) IBD candidates/day for on (off)
- detector & MC simulation
 - 5% energy resolution at 1 MeV
 - 70% background reduction using PSD
 - escaping γ , E resolution, charge response well reproduced by MC.

NEOS - prompt energy spectrum

- shape comparison with Huber & Mueller's flux model:
 - excess around 5 MeV
 - another disagreement

at

low energy side.

 result with sterile-∨ analysis

will be published soon.

Segmented Liquid Scintillator Target +Gd-Loaded

Stereo Setup

Insertion underneath the ILL water channel

SFP. LPNHE

Stereo Setup

Motivations

 Look for a new oscillation pattern in identical detector cells

Ε

L

 New reference v spectrum from quasi-pure ²³⁵U fissions at the compact core of ILL-Grenoble.

Data taking has started on Nov 10, 2016 !

Insertion underneath the ILL water channel

SFP, LPNHE

Event display of PMT charges

Crown event tagging the entry point of an external background (~ 3.7 MeV)

Stereo meets the challenging attenuation of the external gamma and neutron fluxes induced by the reactor and nearby neutron beam experiments.

- The measured single rate in target in the 2-8 MeV window is within specifications: 14 Hz.
- The acquisition threshold is currently set as low as 250 keV with a rate of 79 Hz in the target after applying the muon veto.
- Correlated background under study.

Light collection

 Caveat: deficient optical coupling of the PMTs in cell4. Related systematics under study for this specific cell.

Highly Segmented Liquid Scintillators + Li⁶-Loaded

Prospect

PROSPECT: Precision Oscillation and Spectrum Experiment

Search for short-baseline oscillation at distances <10m Precision measurement of ²³⁵U reactor $\nu_{\rm e}$ spectrum

2 detectors, movable baseline, research reactor

Phase I

one <u>movable detector</u> AD-I, ~7-12 m baseline (Array of 1.2 m segments filled with L6LS)

Phase II two detectors, <u>movable</u> AD-I, ~7-12m baseline stationary AD-II, ~15-19m baseline power: 85 MW (research) fuel: highly enriched uranium (²³⁵U)

SFP, LPNHE

PROSPECT: Detector and Shielding Development

Prototyping and Detector Assembly

Highly Segmented Plastic Scintillators +Gd-coating

DANSS/DANSSino

DANSS : Detector of the reactor AntiNeutrino based on Solid state Scintillator (aim: reactor monitoring and search for sterile neutrino oscillations)

- Segmented "XY" plastic scintillator (1 m³) close to the core of the Kalinin NPP reactor #4 (3 GW_{th})
- Expected IBD count rate $\sim 10^4 \overline{v_e}$ / day; S/B \geq 100
- Movable lifting platform => Φ_v (L=9.7–12.2 m)
- Planned start of operation : 28/12/2015
- Pilot version (DANSSino): 40 kg = 1/25th of DANSS
- Agreement with MC
- arXiv:1304.3696
- arXiv:1305.3350

Example of the reactor neutrino monitoring

DANSS detector (without external shielding)

Highly Segmented Plastics Scintillators +Li^{6 (}loading or with Li⁶-ZnS scintillator)

NuLat SoLi∂ (Mars and Chandler technology)
NuLat – Neutrino Lattice

A Novel Detector for probing RAA, reactor monitoring and fast neutron directionality

- NuLat finely, 3D segmented detector
- 10×10×10 ⁶Li loaded plastic scintillator cubes (2.5"), spaced by thin air gaps.
- Utilizes total internal reflection (n = 1 and n = 1.54) to totally guide and focus light in just 6 PMTs along the three principal axis
- Easily scalable, zero mass wall (air)
- LY > 600 pe/MeV over just 6 PMTs! (En. Res: 4%/ sqrt(E))
- NuLat is a joint

endeavor of 20+ scientists

(Drexel, Johns Hopkins, LSU, NIST, NCCU, Ultralytics LLC,

University of Hawaii, Virginia Tech)

NuLat Highlights

 Inverse beta decay with neutron capture on ⁶Li

⁶Li + n \rightarrow 3H + α + 4.8 MeV

- Localized 400 keV_{ee}
- Excellent localization and background rejection
- Prompt signal: positron + annihilation gammas, clearly distinguishable by complete event topology

- Short capture time -7μ s
- Distinguishable delayed signal thanks to pulse shape discrimination

NuLat – Sensitivity and timeline

- 5x5x5 demonstrator under construction
- Design finalized and major parts ordered months ago
- Final assembly in March 2016
- Deployment at 2 reactors: NIST (Maryland) and North Ana (Virginia)
- Decent sensitivity with the demonstrator
- Proposal under review for 10x10x10 detector

X

SoLid: General Principle

- ✓ Search for sterile neutrinos (∆m²~eV²) via very short baseline oscillations at BR2 HEU reactor at SCK•CEN, Mol, Belgium
- ✓ Precision measurement of the anti- e energy spectrum of a U235 reactor

→ High segmentation via innovative technology:

Planes made of 16*16 5.5 cm PVT cubes + ⁶Li layers for efficient neutron capture.

Spring 2015: SMI

- 16*16*9 cubes, 288 channels;
- 50h reactor-on;
- -430h reactor-off.

- ✓ Validation of detector's concept;
- ✓ Performance study (ex: ε neutron)
 - => a guide for phase1 trigger design;
- \checkmark Development of calibration methods;
- ✓ Proof of the bkg reduction capabilities;
- ✓ First IBD candidates.

Spring 2015: SMI

 \checkmark Validation of detector's concept;

2016: toward the full scale experiment

- ✓ Caracterisation of the cubes chosen for phase I. Test bench: cubes exposed to I MeV e- (207 Bi). => σ E~15%
- ✓ Electronics design;
- ✓ Full simulation well advanced;
- ✓ Design and construction of the off- and on-site calibration systems;

Early 2017: Phase I !

Winter/Spring

-Construct, commission, calibrate; -Refine analysis methods and bkg understanding.

Then 300 days reactor-on

- I st indication of an oscillation;
- U5 spectrum measurement.

2016: toward the full scale experiment

✓ Caracterisation of the cubes chosen for phase I.
 Test bench: cubes exposed to I MeV e- (²⁰⁷Bi).
 => σE~I5%

- ✓ Electronics design;
- ✓ Full simulation well advanced;
- ✓ Design and construction of the off- and on-site calibration systems;

Early 2017: Phase I !

Winter/Spring

-Construct, commission, calibrate; -Refine analysis methods and bkg understanding.

Then 300 days reactor-on

- I st indication of an oscillation;
- U5 spectrum measurement.

SoLi ∂ : Experiment phases

2 tonnes fiducial

Phase II ~ 2019

Light is transported by total-internal-reflection

SFP, LPNHE

Neutron Capture in MicroCHANDLER

The 18-channel MicroCHANDLER prototype is idea for testing neutron tagging.

For each hit cell, we compute the neutron ID variable as the ratio of the integral of the pulse to the pulse peak value.

Very good discrimination Neutron / gamma-ray by pulse shape

<u>MiniCHANDLER</u> is a **fully funded** system test $(8 \times 8 \times 5)$ which is now being commissioned and will be deployed at North Anna Nuclear Power Plant, Virginia.

SBL reactor experiments

Experiment		Reactor Power/Fuel	Overburden (mwe)	Detection Material	Segmentation	Optical Readout	Particle ID Capability
DANSS		3000 MW	~50	Inhomogeneous	2D, ~5mm	WLS fibers.	Topology only
(Russia)	R TOTAL	EU fuel		PS & Gd sheets			
NEOS		2800 MW	~20	Homogeneous	none	Direct double	recoil PSD only
(South Korea)		LEU fuel		Gd-doped LS		ended PMT	
nuLat		40 MW	few	Homogeneous	Quasi-3D, 5cm,	Direct PMT	Topology, recoil
(USA)		²³⁵ U fuel		⁶ Li doped PS	3-axis Opt. Latt		& capture PSD
Neutrino4	ALALA E	100 MW	~10	Homogeneous	2D, ~10cm	Direct single	Topology only
(Russia)		²³⁵ U fuel		Gd-doped LS		ended PMT	
PROSPECT		85 MW	few	Homogeneous	2D, 15cm	Direct double	Topology, recoil
(USA)		²³⁵ U fuel		°Li-doped LS		ended PMT	& capture PSD
SoLid		72 MW	~10	Inhomogeneous	Quasi-3D, 5cm	WLS fibers	topology,
(UK Fr Bel US)		²³⁵ U fuel		[°] LiZnS & PS	multiplex		capture PSD
Chandler	1 23	72 MW	~10	Inhomogeneous	Quasi-3D, 5cm,	Direct PMT/	topology,
(USA)	-	²³³ U fuel		[°] LiZnS & PS	2-axis Opt. Latt	WLS Scint.	capture PSD
Stereo 📷	Annang Manual	57 MW	~15	Homogeneous	1D, 25cm	Direct single	recoil PSD
(France)		²³³ U fuel		Gd-doped LS		ended PMT	

Different technolgies, sites, features...

- Detection at very short distance and low overbudern:
 - Challenging background conditions to handle
 - Large panels of detection technologies: Liquid vs plastic, segmented, size of the segmentation, neutron capture, many R&Ds provided to enhance discrimination of IBD
- Most of the experiments focus on both L (baseline) and E (energy) information to provide a clear L/E unambiguous oscillation pattern if any
- Reactor experiments offer direct test of the reactor anomaly and the sterile neutrino hypothesis
- Antineutrino Spectra at HEU reactors for a better understanding of the 5MeV distortion

Thanks to D. Lhuilier, V. Egorov, D. Franco, J. Maricic, C. Mariani, K. Heeger, Y. Ho, A. Serebrov, et al. for slides and material

Distortion analysis with ND rate+shape (A. Cabrera CERN seminar 09/16)

Test the existence of features not biased by shape-only assumption (i.e. smaller errors)

shape-only≈Bugey4 (consistency of Bugey4?)

non-statical features
which is deficit?
which excess?
which is OK?
⇒ less evident!!

careful analysis before stating the "trouble region" is bump problem really? (maybe no bump whatsoever)

(bias question \rightarrow bias answer)

SoLi ∂ : Sensibility

Backup

LSND $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ Appearance

MiniBooNE $v_{\mu} \rightarrow v_{e}$ Appearance Search

Gallium Anomaly (v_e Disappearance)

The solar radiochemical detectors GALLEX and SAGE used intense electron capture sources (⁵¹Cr and ³⁷Ar) to "calibrate" the ν_e^{71} Ga interaction/detection rate.

Giunti et al., Phys.Rev.D86, 113014 (2012) A reanalysis, based on new cross [eV²] section calculations, suggests that were too few events. Δm_{41}^2 1.15 ____ 1.1 Measured / predicted 1.05 0.95 0.9 68.27% CL (1o) 0.85 10^{-1} 90.00% CL 0.8 95.45% CL (2σ) 99.00% CL 0.75 99.73% CL (3o) 0.7 10⁻² 10^{-2} 10^{-1} 0.65 10° GALLEX1 SAGE_A sin²2ϑ₀₀ Giunti & Laveder, Phys.Rev.C83, 065504 (2011)

Revised reactor neutrino spectra (v_e Disappearance)

2011 re-evalatation of reactor antineutrino flux and update on

cross-section parameters (Mueller et al. PhysRevC83054615)

- 3.5% new conversion of ILL beta spectra
- 1.5% off-equilibrium
- 1.5% neutron lifetime **T**n
- → Significant increase of the prediction by 6.5%

←→ Rate deficit 6.5%

Reanalysis of reactor SBL experiments G. Mention et al., Phys. Rev. D83, 073006 (2011)

(updated in White Paper on sterile neutrinos: [2012 result] [hep-ph:1204.5379]

PROSPECT: Precision Oscillation and Spectrum Experiment

Search for short-baseline oscillation at distances <10m Precision measurement of ^{235}U reactor $\,\overline{\nu}_{\,\mathrm{e}}\,\mathrm{spectrum}$

2 detectors, movable baseline, research reactor

Phase I

one <u>movable detector</u> AD-I, ~7-12 m baseline (Array of 1.2 m segments filled with L6LS)

Phase II two detectors, <u>movable</u> AD-I, ~7-12m baseline stationary AD-II, ~15-19m baseline power: 85 MW (research) fuel: highly enriched uranium (²³⁵U) core shape: cylindrical, compact duty-cycle: 41%

physics program, arXiv: 1512.02202 test detector studies, JINST 10 P11004 (2015)_ background measurements, NIM A806 (2016) 401 whitepaper, arXiv: 1309.7647

prospect.yale.edu

PROSPECT: Physics

A Precision Oscillation Experiment

 4σ test of best fit after 1 year > 3σ test of favored region after 3 years 5σ test of allowed region after 3+3 years

A Precision Spectrum Experiment

Measurement of ²³⁵U spectrum Compare different reactor models Opportunity to compare different reactor cores

Highly Segmented Plastic Scintillators +Li⁶-loaded

NuLat

NuLat – Neutrino Lattice

A Novel Detector for probing RAA, reactor monitoring and fast neutron directionality

- NuLat finely, 3D segmented detector
- 10×10×10 ⁶Li loaded plastic scintillator cubes (2.5"), spaced by thin air gaps.
- Utilizes total internal reflection (n = 1 and n = 1.54) to totally guide and focus light in just 6 PMTs along the three principal axis
- Easily scalable, zero mass wall (air)
- LY > 600 pe/MeV over just 6 PMTs! (En. Res: 4%/ sqrt(E))
- NuLat is a joint

endeavor of 20+ scientists

(Drexel, Johns Hopkins, LSU, NIST, NCCU, Ultralytics LLC,

University of Hawaii, Virginia Tech)

NuLat Highlights

 Inverse beta decay with neutron capture on ⁶Li

⁶Li + n \rightarrow 3H + α + 4.8 MeV

- Localized 400 keV_{ee}
- Excellent localization and background rejection
- Prompt signal: positron + annihilation gammas, clearly distinguishable by complete event topology

- Short capture time -7μ s
- Distinguishable delayed signal thanks to pulse shape discrimination

Eljen LLNL based EJ-200 ⁶Li PSD

NuLat – Sensitivity and timeline

- 5x5x5 demonstrator under construction
- Design finalized and major parts ordered months ago
- Final assembly in March 2016
- Deployment at 2 reactors: NIST (Maryland) and North Ana (Virginia)
- Decent sensitivity with the demonstrator
- Proposal under review for 10x10x10 detector

1.01 $\Delta m^2 = 1.77 eV^2$ sin²2*θ*=0.025 oscillation 10° 1.00 Ratio observed/no-66 66 66 Live-time reactor power The Detecto $\Delta m^2_{41} \ [eV^2]$ 10^{0} 0.97 1.01 $\Delta m^2 = 8.85 eV^2$ sin²2*θ*=0.025 oscillation re Size Gallium Anomaly, 95% CL 1.00 tance 10^{-1} Reactor Anomaly, 95% CL . 99. 0 All ve Disappearance, 95% CL Ratio observ 86'0 5^3 , 1 year, 1 σ CL 10^3 , 5 years, 3σ CL 15^3 , 5 years, 3σ CL 10⁻² 0.97 0.5 1.5 10 10^{-2} 10^{-1} L/E [m/MeV] $\sin^2 2\theta_{41}$

 10^{0}

SoLid Sensitivity with CHANDLER

Distribution of events as a function of L/E for $\Delta m^2 = 1.78 eV^2$.

The red data points are for CHANDLER and the blue data points are for SoLid. Resolutions are fully included and the error bars represent the statistical errors after background subtraction.

Adding CHANDLER to the three-year Phase II extends the coverage to higher Δm^2 and pushes the reach well into the Reactor Anomaly. These sensitivities are purely oscillometric, based on energy spectrum and baseline information alone.

SoLid : In situ calibration with muons

SoLid : Detector

- High segmentation of target volume
 - Precise localisation of IBD event (< 5cm)
 - limit the need for large passive shielding
- Discrimination Neutron / gamma-ray by pulse shape
 - distinctive response for prompt and delayed signal
 - Identification based on neutron pulse (shape proportional to integral)
 - neutron can be used to trigger event read out
- Calibration with SMI
 - in-situ energy calibration using Muon dEdx + Light yield measured : 25 PA/cube (SMT)
 - Very good stability of energy scale observed (few %)

SoLi∂ : IBD analysis

- First data processing completed
- Study of background events and selection cuts started
 - Expect S:Bacc ~2:1 using cube segmentation
- aim for result early next year

Radio-purity

Expected and measured spectra, before and after the cuts

- Alpha's from ²¹⁰**Po** are subtracted via pulse shape discrimination
- Most of the rejected events are **external background** and cosmic **muon induced** events
- Contamination intrinsic to the scintillator is the **lowest ever reached** in organic scintillators:
 - ²³⁸U and ²³²Th at ~10⁻¹⁹ g/g of scintillator
 - $14C/12C \sim 10^{-18}$

The extremely low background extended the physics potential of Borexino in the solar neutrino physics, geo-neutrinos, and fundamental particle physics

Solar Neutrinos

Solar Neutrinos

Geo-neutrinos

Geo- vs. reactor neutrinos

Detection trough inverse beta dacay

$$\bar{\nu}_e + p \to n + e^+$$

 $n + H \to D + \gamma(2.2 \text{MeV})$

Last update: ~ 2000 days exposure

Free chondritic ratio

Possibility to distinguish between different geological models

Research and Development Effort

<u>Cube String Studies</u> have been used to study light production, light collection, light attenuation, energy resolution and wavelength shifter concentration.

<u>MicroCHANDLER</u> is a $3 \times 3 \times 3$ prototype which we are using to test our full electronics chain, develop the data acquisition system, study neutron capture identification and measure background rates.

MiniCHANDLER is a **fully funded** system test (8×8×5) which is now being commissioned and will be deployed at North Anna Nuclear Power Plant, Virginia.

MicroCHANDLER R&D

Light tight mechanical set up of the MicroCHANDLER

Light guide used with HAMAMATSU PMTs

➢ Old : 2 inch PMT (xp2202)

Fully functioning

- New : Hamamatsu (R6231-100), 2 inch diameter, high Q.E. and linearity over large dynamic range.
- Readout resolution of two types of PMTs are being tested in this set up.
- Easy access to PMTs. No possibility of over heating the PMT bases.
- \blacktriangleright No hassle to put the radioactive source on top of the box.

MicroCHANDLER : Compton edge study

ai, vii giilla l

- Threshold used for neutron runs : ~ 10 ADC.
- New PMTs show better resolution.

► X

Old

PMTs
Mechanical design of MiniCHANDL ER

Goal of the MicroCHANDLER mechanical set up was to test the light tightness of the box.

After successful operation of the MicroCHANDLER, same mechanical set up has been prepared for the MiniCHANDLER.

Mechanical design of MiniCHANDL ER

Use of O-ring, ring spacer and PMT O-ring clamp plate is to make the box light tight.

Easy access to any PMT channels as before.

Commissionin g of MiniCHANDL ER

Assembling WLS scintillator cubes

Assembling PMTs

Li sheets (white) are also visible between layers.

Goal: scale up the technology of the MicroCHANDLER towards CHANDLER.

Future plan : Deployment at the reactor site

North Anna Nuclear Power Plant, Virginia

Around 4 hours drive from the Virginia Tech.

MiniCHANDLER will be placed inside this trailer at the power plant.

Status and Schedule

- JSNS² received the Stage-1 status (out of 2 stages) from KEK and J-PARC in 2015.
- We just received 140Myen to build the first (of two) detector modules from Japan grant-in-aid.
- The JSNS² aims to start the experiment from JFY2018-2019.

- Lots of R&D and design works have been done.
 - arXiv:1507.07076 (liquid scintillator R&D)
 - arXiv:1601.01046 (R&D for LS and PMT, discussion for safety issues, additional physics: KDAR, supernova)
 - arXiv:1610.08186 (LS R&D, veto system design, software works)
- Technical Design Report will be submitted soon.

STEREO : 2m³ in 6 target cells + GC

ILL site, Grenoble - France:

- 57 MW, compact core < Im
- [8.9–11.1] m from core, possible extension to 12.3 m.
- High level of reactor background
- 15 mwe overburden

STEREO: Accurate Detector Response

Response to 2 MeV positrons

- Uniform response validated with a prototype cell
- Circulation of radioactive sources inside and around the detector
- Complete simulation of light emission and collection
- I I.5% resolution for 2 MeV e⁺, including edge effects.

STEREO: Toward Data Taking

- Most detector parts under fabrication
- Installation on the ILL site in winter-spring 2016
- First data expected in summer 2016