Electron reconstruction efficiency measurement with the ATLAS detector at the LHC, and study of the Higgs boson coupling to the top quark with the two same sign leptons channel.

<u>Kevin de Vasconcelos</u>, Fabrice Hubaut CPPM / IN2P3 - Aix-Marseille Université (Marseille, France) <u>kevin.devasconcelos@cern.ch</u>

CPPM PhD day seminar - 7th October 2016

Motivation

Sketch of the electromagnetic calorimeter granularity

Electron reconstruction

Leptonic events are « markers of interest » in the harsh pp collision hadronic environnement

- → New Physics (NP)
- Precision measurements

Needs :

- 1. low number of events for NP: high selection efficiency
- 2. high background rejection (ex $H \rightarrow WW$)

→ Understanding of the ATLAS detector.

As trigger and identification, reconstruction of electrons needs a precise efficiency measurement for all SM studies or to set limits.

$$\varepsilon_{\text{total}} = \varepsilon_{\text{reco}} \times \varepsilon_{\text{id}} \times \varepsilon_{\text{trigger}} \times \varepsilon_{\text{other}}$$

Electron reconstruction

Principle

- Reconstruction in the central region of the detector (| η | < 2.47)
- starts from energy deposits (clusters) in the EM calorimeter in a fixed $\Delta \eta \propto \Delta \phi$ window
- Deposits are associated to reconstructed tracks of charged particles in the inner detector
 - ► No track found, or conversion vertex → photon
 - ► Track found → likely an electron

Challenges

- Main challenge for a precision measurement = background estimate (we use clusters: high and complex background)
- Simulation not reliable enough

Data driven measurements are needed for a % or sub-% level accuracy.

In Z → ee channel

High production **cross section** (1950 pb at 13 TeV). High **purity** thanks to the two electrons.

Pure and unbiased sample Strict selection applied on the first electron. Identifies the Z decay event A looser candidate with M_{ee} ~M_Z Cell cluster reconstructed in the calorimeter Used to calculate the efficiency +Track quality criteria 3 At least 1 hit in the pixel detector and 7 in the SCT Association track - EM cluster track quality Efficiency = All clusters with $M_{tag-probe} \sim M_Z$

Background estimate

- 3. Signal in the side band regions subtracted from simulation
- 4. Fit the ey-mass distribution with a 3rd order polynomial.

Background estimate

- 3. Signal in the side band regions subtracted from simulation
- 4. Fit the ey-mass distribution with a 3rd order polynomial.

Background estimate

- 3. Signal in the side band regions subtracted from simulation
- 4. Fit the ey-mass distribution with a 3rd order polynomial.

Measurement

Goal: Establish a scale factor map, binned in p_T and η .

Comparison with 2015 results

Kevin de Vasconcelos - CPPM PhD day seminar - 7th October 2016

Comparison with 2015 results

Stability in pile up and time

ttH in same-sign leptons channel

Fake leptons estimation

H → WW (22%), also H → ττ (6.3%) and H → ZZ (2.6%) W → $|\nu$ (21%), τ → $|\nu\nu$ (35.2%), Z → || (6.7%) for | = e, µ

Fake leptons:

- Non negligible contribution to all channels
- Dominate systematics

What are they:

- Instrumental background: misreconstructed object as leptons
- non prompt leptons decaying from heavy hadrons
- electrons from photon conversions

Data driven method to estimate the amount of fake leptons, the Matrix Method.

Participated to the framework development.

Conclusions and outlooks

- Migrated the code to whole new framework.
- Participated in 2015 measurements made public in <u>ATLAS-CONF-2016-024</u>
- Measurements regularly performed with 2016 data.
- spring.

Estimate of fake lepton background in ttH with two same sign leptons • First results at \sqrt{s} = 13 TeV have gone public last summer at ICHEP conference (<u>ATLAS-CONF-2016-058</u>)

Electron reconstruction efficiency measurement = ATLAS qualification task (done)

• Under study : improvements in the measurement methodology to further reduce the systematics

• Results used by all physics analyses of the ATLAS experiment, They will be part of a paper foreseen next

What's next?

Multivariate analysis in ttH with same-sign leptons channel

- separate BDT
- MVA with the same signal efficiency

Kevin de Vasconcelos - CPPM PhD day seminar - 7th October 2016

What's next?

Multivariate analysis in ttH with same-sign leptons channel

- separate BDT
- MVA with the same signal efficiency

Towards a publication around summer 2017

What's next?

Multivariate analysis in ttH with same-sign leptons channel

- separate BDT

Towards a publication around summer 2017

Backup

In Zee channel - Detailed selection

Need a pure and unbiased electron sampling

Strict selection on the first electron:

- tight cuts
- out of crack region
- triggered by a $p_T > 25$ GeV electron

A looser candidate with $M_{ee} \sim M_Z$

Cell cluster reconstructed in the calorimeter

- p_T > 15 GeV
- ΔR > 0.4 (jet pT > 20 GeV)
- M_{ee} in]80, 100[GeV
- + if MC; probe from Z decay (truth level)

The two electron candidates are tested as tag if they pass the selection criteria

Association tracks-clusters: track quality requirement (at least 1 hit in the pixel detector and 7 in the SCT)

In Zee channel

Background estimation

Electrons reconstructed as clusters with an associated track

Reversed identification

Background model made by reversed identification: probe candidates failing selection

- → Fail to pass at least 2 loose++ cuts
- → Bad isolation of the probe

Template	Cuts	р _т < 30 GeV	p _T >= 30 GeV
Variation 1	fail at least 2 loose+ + cuts	topoE _T ^{cone30} /p _T > 0.02 120 < m _{ee} < 250 GeV	topoE _T ^{cone40} /p _T > 0.05 120 < m _{ee} < 250 GeV
Variation 2		topoE _T ^{cone30} /p _T > 0.02 60 < m _{ee} < 70 GeV	topoE _T ^{cone40} /p _T > 0.20 120 < m _{ee} < 250 GeV

Exclusion of signal contamination

Signal contribution in the high mass window [120, 250] GeV estimated by simulation:

in the peak region, the number of background is:

 $B^{e} = N_{\text{peak}}^{\text{template}} \times \frac{N_{\text{tail}}^{e} - N_{\text{tail}}^{tight++} / \varepsilon_{\text{tail}}^{tight++}}{N_{\text{tail}}^{\text{template}}}$

Normalization

3

Background efficiency limited

→ Distribution normalized to the high/low mass data distribution: M_{ee} > 120 GeV / [60, 70] GeV

> 50 x less signal in the normalization region compared to the peak

Background estimation

Electrons reconstructed as clusters with no associated track

$$\varepsilon_{\rm reco} = \frac{N_{\rm pass}^{\rm sig}}{N_{\rm pass}^{\rm sig} + N_{\rm fail}^{\rm sig}} = \frac{N_p^e - B_p^e}{\left(N_p^e - B_p^e\right) + \left(N_F^e - B_F^e\right) + \left(N_F^e - B_F^e\right)}$$

Probe candidates failing electron reconstruction, regarded as photons. Here, it is difficult to use reversed cuts or isolation variables.

Simpler method

- 1. Construct invariant mass between electron tag and photon probe.
- 2. Choose side band regions outside the Z mass peak.
- 3. Signal in the side band regions subtracted from simulation
- 4. Fit the ey-mass distribution with a 3rd order polynomial.

Denominator detailed distribution

Efficiency computation

Uncertainties on ϵ_{reco}

Systematics

Problem: correlated **Solution:** estimated at the same time by varying tag selection and background parameters.

Sources of uncertainties:

- Shape of the background
- Composition of the background
- Signal contamination of background templates
- Lower efficiency at low mass (*bremsstrahlung*)
- Background shape for candidates with no associated track.

+

- Signal contamination in the normalization template region
- Signal contamination in the fit region

Statistical

Determined by error propagation

- x 3 Invariant mass window for the T&P pair
- x 3 TagID
- x 2 Definition of the background template
- x 4 Range for the fit for candidates with no associated track

72 variations for data, 9 for MC

Efficiency computation

Detailed variations

Tag identification variations	Z mass peak windows	Electron background template	Sideband for ey mass fit
Tight LH]80, 100[GeV	Variation 1]70, 80[U]100, 110[GeV
Tight LH & TopoE _T cone40 < 5 GeV]75, 105[GeV	Variation 2]60, 80[U]100, 120[GeV
Medium LH & TopoE _T cone40 < 5 GeV]85, 95[GeV]50, 80[U]100, 130[GeV
]55, 70[U]110, 125[GeV
W/Z + jets events - QCD events without electron		Change signal proportion	
Lo bre	n of rons	Evaluate the stability of the analytic form	

Template	Cuts	р _т < 30 GeV	p _T >= 30 GeV
Variation 1	fail at least 2 loose+ + cuts	topoE _T ^{cone30} /p _T > 0.02 120 < m _{ee} < 250 GeV	topoE _T ^{cone40} /p _T > 0.05 120 < m _{ee} < 250 GeV
Variation 2		topoE _T ^{cone30} /p _T > 0.02 60 < m _{ee} < 70 GeV	topoE _T ^{cone40} /p _T > 0.20 120 < m _{ee} < 250 GeV

Kevin de Vasconcelos - CPPM PhD day seminar - 7th October 2016

Data - MC efficiencies

Comparison with pre-recommendations

Kevin de Vasconcelos - CPPM PhD day seminar - 7th October 2016

Higgs boson

Production

4 production modes at LHC

- **Gluon fusion:** allows an indirect measurement of the top Higgs coupling
- Vector boson fusion: no coupling
- Higgs-strahlung : no coupling
- ttH production: allows a direct measurement

Low production cross sections

	ggF	WH+ZH	VBF	ttH
Run 7 8 TeV (pb)	19.3	1.12	1.6	0.13
Run ² 13 TeV (pb)	43.9	2.27	3.8	0.51
			,	

2 orders of magnitude

Higgs boson

Decay

Branching ratios

- Probability to decay in a defined final state

$$BR(H \to b\bar{b}) = \frac{\Gamma(H \to b\bar{b})}{\Gamma(H \to b\bar{b}) + \Gamma(H \to c\bar{c}) \dots} = 57.7\%$$

To get two same-sign leptons

- 3 Higgs decays

-0

Higgs boson

Decay

 $W \rightarrow |\nu(21\%), \tau \rightarrow |\nu\nu(35.2\%), Z \rightarrow || (6.7\%) \text{ for } |= e, \mu$

 $N_{\text{sig, run2}} = \underbrace{510 \text{ fb}}_{\sigma_{t\bar{t}H(WW)}} \times \underbrace{0.215}_{\text{BR}(H \to WW)} \times \underbrace{0.041}_{\text{Two same-sign leptons}} \sim 4.3 \text{ events/fb}^{-1}$

ttH production with a multileptonic final state

Study of **five multileptonic final states** from ttH production:

Consistent with the Standard Model, but limited by statistics.

Run 2 : 100 fb⁻¹ data, $\sqrt{s} = 13 \,\mathrm{TeV}$

µ measurement possible for the first time with the Run 2 of LHC. Great opportunity to get a **precise measurement**.

Prospect study for the run 2 (2015 - 2018) in the two same-sign leptons **channel** (e ou µ).

ttH in same-sign leptons channel

ttH signal

Caracteristics

- Three channels : ee, eµ, µµ
- 6 jets including 2 b-jets
- Missing transverse energy due to neutrinos

A clear signature

- Standard Model background with a two same-sign leptons final state **low but irreducible**
- Fake leptons background (mainly from heavy flavour decays) and leptons charge-flip **dominant but reducible**.

ttH in same-sign leptons channel

Backgrounds

ttW + 0, 1, 2, jets

This diagramme appears with a positive or négative W leading to 2/3 events with two positive leptons and 1/3 with two negative leptons.

ttZ leads to a final state with **3 leptons**, but is regarded as a two lepton final state if the third is misreconstructed or out of the detector acceptance.

ttZ + 0, 1, 2 jets

Dominating background (but reducible) with additional jets and non-prompt leptons. $\sigma\left(t\bar{t}\right)$ ~ 2000 (1500) for \sqrt{s} = 8 TeV (13 TeV) $\sigma (t\bar{t}H)$

$\sigma \times 2, 8$

 $\sigma \times 3, 3$

Multivariate analysis (MVA)

Principle

To discriminate the signal and backgrounds one could **apply selections** on variables to reject as much red points as possible.

One should use multivariate analysis methods such as neural networks or boosted decision trees (BDT)

