Estimation of Fake Lepton Background in the Two Same-sign Lepton ttH Final States with the ATLAS Experiment

Asma Hadef

Supervised by: Pascal Pralavorio Fabrice Hubaut

Institut National De Physique Nucleaire Et De Physique Des Particules(IN2P3) Aix-Marseille University Centre De Physique Des Particules De Marseille ATLAS Group

07-10-2016

PHD Status

Detector Performance

- Finalize 2015 reconstruction efficiency measurements using local CPPM framework.
- Present T&P group in e/gamma workshop 2015.
- Present LHCC egamma poster on March 2016.
- Contributed in the CONF note.
- Help to transfer CPPM code to the official framework.

ttHML analysis:

- Introduce Matrix method as a cross check in the internal note.
- Contributed in the Conf note released on August 2016.
- Presented the ttHML group in HTop workshop at CERN on 3rd of October 2016.

Asma Hadef | CPPM

Introduction

Background

Asma Hadef | CPPM

Fake Leptons

What are fake leptons?

- Miss reconstructed objects as leptons.
- non prompt leptons decaying from heavy hadrons.

Why fakes?

- Non negligible background in all channels.
- Contribute by 30-45% in 2ℓ and 3ℓ channels.
- Driving the error on the total background.

ATLAS Simulation Preliminary		QMisReco Other		Uncertainty Source	$\Delta \mu$	
S = 13 TeV Background composition		$= t\overline{t}(Z/\gamma^*) \qquad = t\overline{t}W$	<	Non-prompt leptons and charge misreconstruction	+0.56	-0.64
2∕0∓ 00	2≁0∓ ou	2 <i>∕</i> 0+ ////		Jet-vertex association, pileup modeling	+0.48	-0.36
21 OThad ee	21 OThad Ep	$2t$ $0t_{had}$ $\mu\mu$		$t\bar{t}W ext{ modeling}$	+0.29	-0.31
				$t\bar{t}H ext{ modeling}$	+0.31	-0.15
				Jet energy scale and resolution	+0.22	-0.18
				$t\bar{t}Z$ modeling	+0.19	-0.19
				Luminosity	+0.19	-0.15
0.44	D 4			Diboson modeling	+0.15	-0.14
2ť1T _{had}	3ť			Jet flavor tagging	+0.15	-0.12
				Light lepton (e, μ) and τ_{had} ID, isolation, trigger	+0.12	-0.10
				Other background modeling	+0.11	-0.11
				Total systematic uncertainty	+1.1	-0.9

Matrix Method: Introduction

<u>Principle</u>:

- 3 control regions (CR) are defined according to jet multiplicity and Tight (T), Loose (L) lepton selection.
- T&P method to estimate the real efficiency *r* and fake rate *f*.
- Input: Yields passing/ failing tight selection (N^{TT}, N^{TT}, N^{TT}, N^{TT}).
- Charge flip (CF) is subtracted in each region using CF rates (W_{TT}^{CF}).

$$N_{f}^{TT} = N_{rf}^{TT} + N_{fr}^{TT} + N_{ff}^{TT} = r_{1}f_{2}N_{rf}^{LL} + r_{2}f_{1}N_{fr}^{LL} + f_{1}f_{2}N_{ff}^{LL} = (MM^{TT}) \cdot N^{TT} + (MM^{T\bar{T}}) \cdot N^{T\bar{T}} + (MM^{T\bar{T}}) \cdot N^{\bar{T}\bar{T}} = [1 - \alpha(r_{1}r_{2}(1 - f_{1})(1 - f_{2}))] \cdot N^{TT} + [\alpha r_{1}r_{2}f_{2}(1 - f_{1})] \cdot N^{T\bar{T}} + [\alpha r_{1}r_{2}f_{1}(1 - f_{2})] \cdot N^{\bar{T}T} + [-\alpha r_{1}r_{2}f_{1}f_{2}] \cdot N^{\bar{T}\bar{T}}$$

$$N^{TT} = N_{SS}^{TT} - W_{TT}^{CF} \times N_{OS}^{TT}$$

Matrix Method: Efficiency Measurements

*Select a real-enriched CR (Real CR) and fake-enriched CR (Fake CR).

 \rightarrow measure efficiency for probe leptons passing Tight selection in bins of p_{T} .

*Apply tag and probe T&P method:

tag: the first Tight and trigger-matched lepton in event (starting from leading lepton)

probe: the other one (can be Tight or not).

Matrix Method: Validity

MC Closure Test

ttbar events with non-prompt lepton.

Flavor	Region	Non-closure	Sys
ee	5 jets	-29 ± 14	29 %
еμ	5jets	-27 ± 10	27 %
μμ	5 jets	-2 ± 18	20 %

DATA Closure Test

Matrix Method: Fake Estimate

Cross Check with Fake Factor Method

Channel	μμ	еµ	ee	
MM (DD CF)	7.0 ± 2.1	8.4 ± 2.6	8.5 ± 2.6	
MM (MC CF)	7.3 ± 2.1	13.7 ± 3.3	9.0 ± 2.5	By CPPM
FF	8.7 ± 2.9	12.4 ± 3.5	12.1 ± 3.8	

Uncertainty

- Source of statistical uncertainties: Size of low jet and high jet multiplicity regions.
- Source of systematics: (conservative by 50%)

Validity of the extrapolation: closure tests.

Normalisation of subtracted prompts.

Fake region composition: stability tests.

- Systematic uncertainty is dominating.
- More deep study of systematics is ongoing!

Channel	μμ	еµ	ee
Stat	2.1	2.6	2.6
Sys	3.0	5.7	2.8

Conclusion

Results are shown for the international conference on high energy physics ICHEP @ luminosity of 13.2 fb⁻¹using collected data in 2015-2016.

Fake lepton estimation plays a major role in multilepton analysis.

Channel	ee5j	em5j	mm5j
Fakes	12.0 ± 6.0	12.0 ± 5.0	8.7 ± 3.4
QmisId	6.9 ± 1.3	7.1 ± 1.7	-
$\mathrm{B}_{\mathrm{red}}/\mathrm{B}_{\mathrm{tot}}$	75.6%	50.3%	43.5%
Total	27 ± 6.0	42.8 ± 6.1	22.9 ± 4.04

Outlook

Currently updating my results with 35 fb⁻¹ and work towards paper completion.

Consistency with the Standard Model expectation. 10

Outlook

- Systematics are dominated by fakes.
- Need to reduce fake contamination.
- If possible reduce systematics.
- Use matrix method as input of MVA?

process	el-el	el-mu	mu-mu	total		el-el	el-mu	ти-ти	tota
ttH	2.00	5.27	3.53	10.80		1.77	4.83	4.00	10.6
ttW	2.92	9.86	7.64	20.41	MVA	2.35	8.42	7.98	18.7
ttZ	1.69	4.41	2.67	8.78		1.47	3.82	3.01	8.3
VV	0.38	2.60	0.86	3.84		0.83	1.96	0.95	3.7
tthar	7 93	16.09	4.37	28.39		3.02	8.51	2.62	14.1
Rare	0.86	2 45	1.62	4.93		0.74	2.20	1.80	4.7
Total bkg	13.78	35.40	17.17	66.35		8.40	24.91	16.36	49.6
Total	15.77	40.68	20.70	77.15		10.18	29.74	20.36	60.2
S/B	0.14	0.15	0.21	0.16		0.21	0.19	0.24	0.2
S/sart(B)	0.54	0.89	0.85	1 33		0.61	0.97	0.99	1.5
Cut based cut						MVA cu	t + numk	per of jets	s >= 5