b-tagging studies

Phenomenology

Backup

Search for $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow 1 \ \ell^{\pm} + h(b\overline{b}) + \mathcal{E}_T$ with ATLAS at LHC Run2

<u>Rima El Kosseifi</u>* Thesis Directors: Jean Loic Kneur**, Steve Muanza*

* CPPM, IN2P3/AMU ** L2C, INP/UM2

CPPM seminar, october 7 2016

b-tagging studies

Phenomenology

Backup

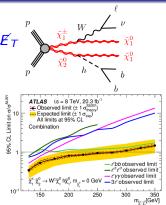
Table of contents

PhD main goal

- 2 b-tagging studies
- 3 Phenomenology

4 Backup

b-tagging studies


Phenomenology

- ATLAS (s = 8 TeV, 20.3 fb) 95% CL Limit on σ/σ Observed limit Expected limit (± 1 σ_{mm}) All limits at 95% CI Combination bb observed limit $-\ell^{\pm}\ell^{\pm}$ observed lim *£vv* observed limit m, [GeV]
- Looking for $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \longrightarrow 1 \ell^{\pm} + h(b\overline{b}) + \mathcal{E}_T$ at LHC Run2 with ATLAS.
- Past: Run1 (√s=8TeV, L= 20 fb⁻¹):
 1st analyses using the Higgs boson to search for SUSY.
 Exclusion limit at 95% C.L.
 m_{χ[±], χ⁰} > 250 GeV, m_{χ⁰}=0 GeV, Ref
- <u>Near future</u>: Run2 (\sqrt{s} =13 TeV, L= 100 fb⁻¹):
 - Enhance the search sensitivity.

b-tagging studies

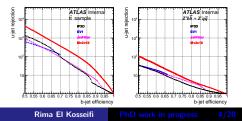
Phenomenology

- Looking for $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \longrightarrow 1 \ell^{\pm} + h(b\overline{b}) + \not{E}_T$ at LHC Run2 with ATLAS.
- Past: Run1 (√s=8TeV, L= 20 fb⁻¹):
 1st analyses using the Higgs boson to search for SUSY.
 Exclusion limit at 95% C.L. m_{χ1[±], χ2} > 250 GeV, m_{χ10}=0 GeV, Ref

- <u>Near future</u>: Run2 (\sqrt{s} =13 TeV, L= 100 fb⁻¹):
 - Enhance the search sensitivity.
- <u>Timing:</u> Starting: Sep 2016 Goal: Preliminary results conf winter 2017, Publication after summer 2017 conf Rima ELKosseifi PDD work in progress 2/20

PhD main goal		Phenomenology	Backup
	•00000	0000000	00000

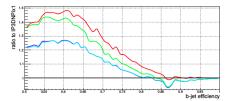
- 2 b-tagging studies
- 3 Phenomenology


		00000	00000
• b	-tagging plays <u>crucial role</u> because of the 2 b-je	ts in the final state.	Displaced
-	-taggers distinguish b jet from light and Rely on B-hadron properties (lifetime, r Based on jets associated tracks roperties. More details	-	Secondary Vertex
• T	he baseline run 2 b-tagging performanc	e for $t\overline{t}$ (b-jet)	<i>pT</i> mean: 66.7

Phenomenology

Backup

PhD main goal


• The baseline run 2 b-tagging performance for tt (b-jet p_T mean: 66.7 GeV) and $Z'(b\overline{b})+Z'(q\overline{q})$ samples (b-jets p_T mean: 550 GeV) for Z' produced with masses 1, 2 and 5 TeV.

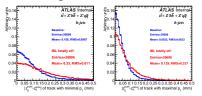
PhD main goal		Phenomenology	Backup
	00000		

Task1: V_0 -trk reconstruction in jets

- V_0 (i.e $K_s^0
 ightarrow \pi^+\pi^-$) have lifetime similar to B-hadron.
- We're studying the impact of using the neutral parent V₀ track instead of the daughters on IP3D b-tagging performance.
- However, among the truth K_s^0 we reconstructed only 15 %.

IP3D 'SV1 Bad Tracks' are used IP3D with rejecting Bad Tracks IP3D with the reco- K_s^0 -track using actual version of SV1 IP3D with rejecting truth π^{\pm} trks from K_s^0 IP3D with the truth- K_s^0 -track shows the highest improvement

Impact of Pixel dead modules on b-tagging

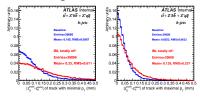

- I produced several scenarios with different % of inactive modules in pixel layers (IBL, L0, L1, L2).
- I studied the role of the IBL against the Multi Scattering and Pattern recognition issues

Phenomenology

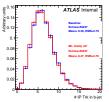
Backup

Impact of Pixel dead modules on b-tagging

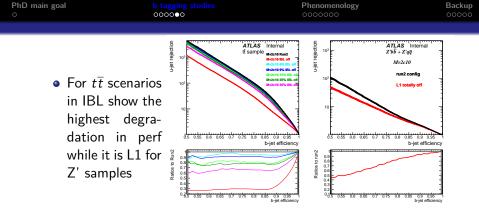
- I produced several scenarios with different % of inactive modules in pixel layers (IBL, L0, L1, L2).
- I studied the role of the IBL against the Multi Scattering and Pattern recognition issues

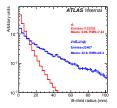

 The degradation in performance is decreasing with increasing track p_T.

Phenomenology

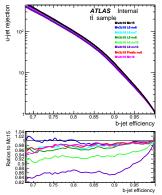

Backup

Impact of Pixel dead modules on b-tagging


- I produced several scenarios with different % of inactive modules in pixel layers (IBL, L0, L1, L2).
- I studied the role of the IBL against the Multi Scattering and Pattern recognition issues


 The degradation in performance is decreasing with increasing track p_T.

 Jets loosing tracks are boosted jets containing large number of tracks.


• This is because B-hadrons go beyond the IBL for Z' samples.

Phenomenology

Impact of pixel ToT threshold changes on b-tagging

- At high Luminosity the number of collision and particles produced will increase and L0 will suffers from high occupency.
- One of the possible solution is to increase the pixel ToT threshold cut from 4 in to 6.

- No visible impact on btagging perf.
- It was decided to increase ToT cut to 6.
- Both studies on pixels will be documented in ATLAS internal notes by end of october.

PhD main goal	b-tagging studies		Backup
		000000	

2 b-tagging studies

PhD main goal O	b-tagging studies	Phenomenology o●oooooo	Backup

- Add the 125 GeV Higgs boson mass as input to Suspect 3
 - Suspect3 is a SUSY spectrum calculator
 - In the present version this mass is calculated as output
- Benefit for all SUSY analyses:

- Facilates pMSSM scans by avoiding large number of incompatible models.

 Task: Look for free parameters in the Higgs and stop sectors (i.e.: μ, A_t, tanβ) computable for a known Higgs boson mass.

PhD main goal O	b-tagging studies	Phenomenology 00●0000	Backup

Suspect3

- <u>Authors</u>: Fortran: A. Djouadi, J-L Kneur, G. Moultaka. - C++: <u>Michael Ughetto</u>, Dirk Zerwas.
- <u>Aim</u>:

٠

- Computes pMSSM spectrum for SUSY breaking models mSUGRA, AMSB and GMSB.

- Implements the radiative corrections at full one loop for the masses and the dominant $\ensuremath{\mathsf{two \ loops \ for \ the \ Higgs}}$

- Input: SLHA file containing
 - SM inputs (M_Z , M_{top}^{pole} , $\alpha(M_Z)$, $\alpha_s(M_Z)$,...)
 - Boundary conditions of the SUSY breaking model.

PhD main goal	b-tagging studies		Backup
		0000000	

• Reminder of the simple approximation for the Higgs mass radiative corrections (RC)

$$m_{h}^{2} = m_{h}^{2,tree} + \frac{3g_{2}^{2}m_{t}^{4}}{8\pi^{2}m_{w}^{2}sin^{2}(\beta)} \left[ln(\frac{m_{\tilde{t}_{1}}m_{\tilde{t}_{2}}}{m_{t}^{2}}) + \frac{X_{t}^{2}}{2M_{s}^{2}} - \frac{X_{t}^{4}}{12M_{s}^{4}}\right]$$

With $X_{t} = A_{t} - \mu cot(\beta)$
 $M_{s}^{2} = \sqrt{m_{Q}^{2}m_{t_{R}}^{2} + m_{t}^{2}(m_{Q}^{2} + m_{t_{R}}^{2}) + m_{t}^{4}}$
 $m_{\tilde{t}_{1}}m_{\tilde{t}_{2}} = \sqrt{M_{s}^{4} - 4m_{t}^{2}X_{t}^{2}}$

• Possible inversions: 125 Higgs boson mass $\xrightarrow{1} A_t$

$$\begin{array}{c} \xrightarrow{2} & \mu \\ \xrightarrow{3} & tan\beta \\ \xrightarrow{4} & m_{H_{u}}^{2}, m_{H_{d}}^{2} \end{array}$$

PhD main goal	b-tagging studies		Backup
		0000000	

- Example: *A_t* computation:
 - Input: tan(β), μ , $m_{H_u}^2$, $m_{H_d}^2$
 - Procedure: $m_A \rightarrow m_H^{tree} \rightarrow \text{RC}$, Quadratic equation in $X_t^2 \rightarrow \text{multiple } A_t$ solutions
- <u>Technical difficulties</u>:
 - Multiple solutions: Need Constraints to reject unwanted solutions
 - Convergence of the iterative procedure
- <u>Status</u>: First code version with the 4 inversions working well and in validation.
- <u>Future work</u>: Replace RC with the full one loop for the masses and the dominant **two loops for the Higgs** relation.

• We computed $m_{H_u}^2$ and $m_{H_d}^2$ using inversion 4 for A_t = -2000.

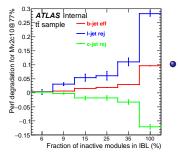
Input	Output
type of inversion $= 1$	At
$m_H \exp = 125 \text{ GeV}$	$m_A^{tree} = 65 \text{ GeV}$
$m_{top} = 173 \text{ GeV}$	$m_H^{tree} = 62.5 \text{ GeV}$
$m_W = 80.1 \text{ GeV}$	$RC = 11719.3 \text{ GeV}^2$
$m_Z = 90.1 \text{ GeV}$	
m_{t_R} = 2000 GeV	A_{t_1} = -2004.48 correct value,
m _Q = 2000 GeV	relative deviation=0.24%
$g_c = 0.64$	
an(eta)=10	$A_{t_2}{=}\ 2204.48$ unwanted value
$\mu = 1000$	-
sign of $\mu{=}+1$	
$m_{H_u}^2 = -984135 \text{ GeV}$	
$m_{H_d}^{2^u}$ = -1.01164e+06 GeV	

b-tagging studies

Phenomenolog

Thank you for your attention!

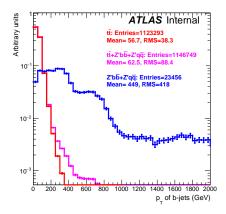
Basics of b-tagging


- The B-hadron properties utilised by spatial b-taggers (i.e.: IP3D, SV):
 - Hard fragmentation of b quarks
 - $(x_B\sim70\%)$
 - long lifetime(\sim 1.5ps)
 - leading to a flight length (few mm)
 - \Rightarrow displaced secondary vertex
- Tracks from B-hadron decay at the SV are characterised by $\boxed{\text{large impact parameters}}$ (IP)
- The IP (d_0, z_0) is the distance from the point of closest approach of the track to the PV.
- Other ATLAS b-taggers: the multivariate Mv2c10
 - It combines the output of the simple taggers (IP3D, SV, ..)

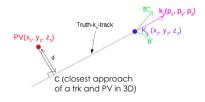
PhD main goal O	b-tagging studies	Phenomenology	Backup 0●000

- The Pixel detector measure the Time-over-Threshold (ToT):
 - the time in which the signal is above threshold.
 - In units of bunch crossings (BC), i.e. 25 ns
- ToT is proportional to the deposited charge.

$$ToT = A\frac{Q+E}{Q+C}$$


- A, E and C are calibrated for each FE.
- RUN1 calibration ToT@mip30 =19000e
- The threshold represents the efficency to have a hit from charged particle
 - it corresponds to 3500e \Rightarrow hits with time < threshold is not read.

• We looked for the degradation in perf for fixed cut on jet-w.


b-tagging studies

Phenomenology

PhD main goal	b-tagging studies	Phenomenology	
			00000

- Tracks from V0 decay in I-jets look like tracks from B-hadron
- They are flagged as SV1 Bad Tracks
- In this preliminary study, using the truth we are estimating the highest improvement we can expect.
- We reconstruct Ks vertex if we find in the same jet two SV1 bad track with opposite charges forming a vertex with ks mass
- We are drawing a linear neutral track for the reco Ks in jet using reco Ks vertex and position x,y,z and Ks momentum Vector.
- Similarly we are drawing a linear neutral track for the truth

