DIRAC FG-DIRAC

A. Tsaregorodtsev, CPPM-IN2P3-CNRS, Marseille Workshop Opérations France-Grilles 8-10 novembre 2016

- DIRAC Overview
- France-Grilles DIRAC service
- EGI DIRAC service
- Conclusions

DIRAC provides all the necessary components to build ad-hoc grid infrastructures interconnecting computing resources of different types, allowing interoperability and simplifying interfaces. This allows to speak about the DIRAC interware.

Job scheduling

- Pilot jobs are submitted to computing resources by specialized Pilot Directors
- After the start, Pilots check the execution environment and form the resource description
 - OS, capacity, disk space, software, etc
- The resources description is presented to the Matcher service, which chooses the most appropriate user job from the Task Queue
- The user job description is delivered to the pilot, which prepares its execution environment and executes the user application
- In the end, the pilot is uploading the results and output data to a predefined destination

4

Computing Grids

- DIRAC was initially developed with the focus on accessing conventional Grid computing resources
 - WLCG grid resources for the LHCb Collaboration
- It fully supports gLite middleware based grids
 - European Grid Infrastructure (EGI), Latin America GISELA, etc
 - Using gLite/EMI middleware
 - Northern American Open Science Grid (OSG)
 - Using VDT middleware
 - Northern European Grid (NDGF)
 - Using ARC middleware
- Other types of grids can be supported
 - As long we have customers needing that

Vcycle, VAC

The DIRAC VM scheduler by means of dedicated VM Directors is interfaced to

Queue state into account

- Apache *cloudlib* compliant clouds
- **OCCI** compliant clouds:
 - OpenStack, OpenNebula
- CloudStack
- Amazon EC2

- *cloudinit* contextualization

VM scheduler

no more needed

Clouds

DIRAC Standalone computing clusters

- Off-site Pilot Director
 - Site delegates control to the central service
 - Site must only define a dedicated local user account
 - The payload submission through an SSH tunnel

• The site can be:

- a single computer or several computers without any batch system
- a computing cluster with a batch system
 - LSF, BQS, SGE, PBS/Torque, Condor
 - Commodity computer farms
 - OAR, SLURM
 - HPC centers
- The user payload is executed with the owner credentials
 - No security compromises with respect to external services

Standalone computing clusters

Examples:

- DIRAC.Yandex.ru
 - >2000 cores
 - Torque batch system, no grid middleware, access by SSH
 - Second largest LHCb MC production site

LRZ Computing Center, Munich

- SLURM batch system, GRAM5 CE service
- Gateway access by GSISSH
- Considerable resources for biomed community (work in progress)
- Mesocentre Aix-Marseille University
 - OAR batch system, no grid middleware, access by SSH
 - Open to multiple communities (work in progress)

Generated on 2012-07-15 21:13:10 UTC

BOINC Desktop Grids

- On the client PC the third party components are installed:
 - VirtualBox hypervisor
 - Standard BOINC client
- A special BOINC application
 - Starts a requested VM within the VirtualBox
 - Passes the Pilot Job to the VM and starts it
- Once the Pilot Job starts in the VM, the user PC becomes a normal DIRAC Worker Node

Storage plugins

- Storage element abstraction with a client implementation for each access protocol
 - DIPS, SRM, XROOTD, RFIO, etc
 - gfal2 based plugin gives access to all protocols supported by the library
 - DCAP, WebDAV, S3, ...
- Each SE is seen by the clients as a logical entity
 - With some specific operational properties
 - SE's can be configured with multiple protocols

Central File Catalog (DFC, LFC, ...) is maintaining a single global logical name space

Several catalogs can be used together

- The mechanism is used to send messages to "pseudocatalog" services, e.g.
 - Transformation service (see later)
 - Bookkeeping service of LHCb
- A user sees it as a single catalog with additional features
- DataManager is a single client interface for logical data operations

File Catalog

File Catalog

- DFC is the central component of the DIRAC Data Management system
- Defines the single logical name space for all the data managed by DIRAC
- Together with the data access components DFC allows to present data to users as single global file system

File Catalog: Metadata

- DFC is Replica and Metadata Catalog
 - User defined metadata
 - The same hierarchy for metadata as for the logical name space
 - Metadata associated with files and directories
 - Allow for efficient searches
 - Efficient Storage Usage reports
 - Suitable for user quotas

find /lhcb/mcdata LastAccess < 01-01-2012
GaussVersion=v1,v2 SE=IN2P3,CERN Name=*.raw</pre>

Bulk operations

- Asynchronous data operations using Request Management System (RMS)
 Placement, replication, removal
- Data driven operations using Transformation System (TS)
 - Automation of recurrent tasks
- The Replication Operation executor
 - Performs the replication itself or
 - Delegates replication to an external third party service, e.g.
 - FTS (developed at CERN)
 - EUDAT
 - OneData

LHCb Collaboration

- About 600 researchers from 40 institutes
- Up to 100K concurrent jobs in ~120 distinct sites
 - Equivalent to running a virtual computing center with a power of 100K CPU cores, which corresponds roughly to ~ 1PFlops
 - Limited mostly by available capacity
- Further optimizations to increase the capacity are possible
- Hardware, database optimizations, service load balancing, etc
- 15

Experiments: Belle II

- Combination of the non-grid, grid sites and (commercial) clouds is a requirement
- 2 GB/s, 40 PB of data in 2019
- Belle II grid resources
 - WLCG, OSG grids
 - KEK Computing Center
 - Amazon EC2 cloud

Thomas Kuhr, Belle II

Belle II

DIRAC Scalability tests

- Random number generation (500/job) or just filling pilot job
 →no SE/AMGA used
- Good performance
 - Even saturated KEKCC GRID
- DIRAC itself was stable

Hideki Miyake, KEK

Community installations

- ILC/CLIC detector Collaboration, Calice VO
 - Dedicated installation at CERN, 10 servers, DB-OD MySQL server
 - MC simulations
 - DIRAC File Catalog was developed to meet the ILC/CLIC requirements
- BES III, IHEP, China
 - Using DIRAC DMS: File Replica and Metadata Catalog, Transfer services
 - Dataset management developed for the needs of BES III
 - Basis for a multi-community service: Juno, CEPC
 - CTA
 - CTA started as France-Grilles DIRAC service customer
 - Now is using a dedicated installation at PIC, Barcelona
 - Using complex workflows
- Geant4
 - Dedicated installation at CERN
 - Validation of MC simulation software releases

DIRAC evaluations by other experiments

- LSST, Pierre Auger Observatory, TREND, Juno, CEPC, NICA, ELI, ...
- Evaluations can be done with general purpose DIRAC services

DIRAC as a Service

D

National services

- DIRAC services are provided by several National Grid Initiatives: France, Spain, Italy, UK, China, Russia, ...
 - Support for small communities
 - Heavily used for training and evaluation purposes

Example: France-Grilles DIRAC service

- Hosted by the CC/IN2P3, Lyon
- Distributed administrator team
 - 5 participating universities
- > 23 VOs, ~100 registered users
- In production since May 2012
 - >12M jobs executed in the last year
 - □ At ~90 distinct sites

http://dirac.france-grilles.fr

DIRAC Hosting hardware in CC/IN2P3

- 6 virtual hosts
 - Moving from Vmware to OpenStack infrastructure
 - 8 core, 16 GB RAM, 200 GB HDD

6TB storage

- NFS mounted
- DIRAC Storage Element
- Job sandboxes
- MySQL service of CC/IN2P3
 - ▶ ~200 GB
 - ~1000 simultaneous connections
- More hosts will be needed
 - ElasticSearch DB (monitoring system activities)
 - Rabbit MQ server
- Nagios based services monitoring
 - Discussion/work in progress

> 2000 CPU years in the last year

Largest VO's: biomed, vo.france-grilles.fr, complex-systems.eu

Job execution rate

- Up to 2 Hz job execution rate
 - > 200K jobs per day
 - VO complex-systems.eu: workflows with large numbers of small jobs
- 24

Virtual Imaging Platform

- Platform for medical image simulations at CREATIS, Lyon
 - Example of a combined use of an Application Portal and DIRAC WMS

- Web portal with robot certificate
- File transfers, user/group/application management

Workflow engine

Generate jobs, (re-)submit, monitor, replicate

DIRAC

- Resource provisioning, job scheduling
- Grid resources
- biomed VO

Tristan Glatard, CREATIS

Using cloud sites

- 4 sites configured
 - CC, LUPM, IPHC, CPPM
 - Max 4-6 instances of 8 cores are allowed
 - APIs: apache-libcloud, rocci

The sites were all operational in summer

- Multiple operational problems
 - Changes (sometime subtle) in site configurations
 - Need for continuous attention, follow-up
 - Need for a unique DIRAC image across sites
- Other DIRAC installations are using cloud resources routinely
 - E.g. BES III, Belle II, LHCb

Certain interest from applications

- Multi-core parallel applications
- Special software, e.g. Docker
- Try to exploit cloud provided flexibility

DIRAC4EGI service

- In production since 2014
- Partners
 - Operated by EGI
 - Hosted by CYFRONET
 - DIRAC Project providing software, consultancy

10 Virtual Organizations

- enmr.eu
- vlemed
- fedcloud.egi.eu
- training.egi.eu
- eiscat.se
- ...
- Usage
 - > 6 million jobs processed in the last year
 - WeNMR: Haddock

DIRAC4EGI activity snapshot

Generated on 2015-11-11 09:03:16 UTC

EGI ACCOUNTING PORTAL

Normalised CPU time [units 1K.SI2K.Hours] by DATE and VO												
DATE	alice	atlas	belle	biomed	cms	compchem	ilc	lhcb	virgo	vo.cta.in2p3.fr	Total	%
Nov 2015	83,043,071	213,187,021	29,633,040	2,992,249	107,998,028	812,409	3,051,240	44,495,710	365,193	5,203,790	490,781,751	8.60%
Dec 2015	81,681,064	167,642,164	30,755,315	2,771,463	81,200,999	1,197,402	10,250,775	42,772,247	4,370	9,643,804	427,919,603	7.50%
Jan 2016	100,472,899	212,596,116	8,254,706	2,221,994	99,768,667	2,869,544	3,904,455	32,614,451	329,113	8,746,790	471,778,735	8.27%
Feb 2016	80,340,391	202,531,157	48,965	1,312,309	100,330,129	1,220,127	2,704,948	44,547,976	1,962,465	5,563,528	440,561,995	7.72%
Mar 2016	108,810,699	172,663,251	3,412,262	2,286,939	75,113,354	1,623,540	2,049,130	83,154,401	1,917,611	1,539,919	452,571,106	7.93%
Apr 2016	111,707,745	211,516,946	496,969	1,622,314	67,855,621	1,970,394	3,051,624	78,821,567	3,517,152	3,079,316	483,639,648	8.47%
May 2016	88,434,699	229,055,135	457,771	3,055,283	64,161,648	3,990,478	4,366,309	70,550,242	11,311,493	669,299	476,052,357	8.34%
Jun 2016	91,963,895	220,222,321	10,039,317	1,375,916	104,040,606	1,755,334	2,097,169	66,545,602	2,558,741	1,103,183	501,702,084	8.79%
Jul 2016	113,408,142	187,198,001	3,614,046	2,152,445	104,373,741	1,614,892	1,596,155	65,898,735	8,005,698	7,794,153	495,656,008	8.69%
Aug 2016	88,278,412	212,942,846	34,225	6,500,219	51,366,225	3,474,177	5,538,912	72,803,805	2,919,127	5,410,036	449,267,984	7.87%
Sep 2016	88,164,653	309,040,532	7,314,602	514,897	90,018,815	2,602,763	3,297,430	106,365,999	1,770,213	6,487,567	615,577,471	10.79%
Oct 2016	68,902,764	167,532,717	1,528,430	467,733	82,329,281	1,301,416	5,324,702	71,019,670	2,752,272	104,325	401,263,310	7.03%
Total	1,105,208,434	2,506,128,207	95,589,648	27,273,761	1,028,557,114	24,432,476	47,232,849	779,590,405	37,413,448	55,345,710	5,706,772,052	
Percentage	19.37%	43.91%	1.68%	0.48%	18.02%	0.43%	0.83%	13.66%	0.66%	0.97%		

- 5 out of Top-10 EGI communities used heavily DIRAC for their payload management in the last year
 - 4 out of 6 top communities excluding LHC experiments
 - belle, biomed, ilc, vo.cta.in2p3.fr
 - compchem will likely join the club

- DIRAC4EGI is included into the list of the EGI Core services
 - Counting on EGI support for the service management
 - Responding to a call for providing EGI services for Phase III 2018-2020
- EGI is interested to provide a viable replacement for the gLite WMS for their communities
 - Using DIRAC WMS in a "gLite" downgraded mode:
 - No use of generic pilots
 - Needs some development to restore this (obsoleted) functionality
 - User certificates or PUSP proxies or ...
 - VO compchem is identified to be the first to try it out
- What about FG-DIRAC ?
 - Role in DIRAC4EGI service
 - Merging FG0DIRAC and DIRAC4EGI services

- Agent based workload management architecture allows to seamlessly integrate different kinds of grids, clouds and other computing and storage resources
- DIRAC is providing a framework for building distributed computing systems and a rich set of ready to use services. This is used now in a number of DIRAC service projects on a regional and national levels
- FG-DIRAC service is fully operational. Need more effort to integrate cloud resources and define policies of their usage
- DIRAC4EGI service is becoming a Core EGI service intended to replace the gLite WMS

