

Gaia DR1

Carine Babusiaux

A first data release

- Gaia mission overview
- Gaia DR1 content
- Validations and limitations

Gaia instruments and measurements

Wavelength [A]

Teamwork to deliver the promise of Gaia

- 10+ years of effort
- 450 scientists and engineers
- 160 institutes
- 24 countries and ESA
- Six data processing centres

gaia

Gaia data processing

The Gaia schedule

Figure courtesy Michael Perryman and François Mignard

A first data release

- Gaia mission overview
- Gaia DR1 content
 - astrometry
 - photometry
- Validations and limitations

Gaia DR1 input data

- 14 months of input data used
- $\sim 2.3 \ 10^{10}$ transits (1 month EPSL than Nominal Scanning Law)
- all sources treated as single

What's in the Gaia DR1 delivery

Tycho-Gaia Astrometric Solution (~ 2 million, $G \lesssim 12$)

Variable stars near south ecliptic pole $(\sim 600 \text{ Cepheids}, \sim 2600 \text{ RR Lyrae})$

Gaia DR1 skymap

ESA/Gaia/DPAC/André Moitinho & Márcia Barros (CENTRA - University of Lisbon)

Gaia DR1 skymap

ESA/Gaia/DPAC/André Moitinho & Márcia Barros (CENTRA - University of Lisbon)

Gaia DR1 skymap

ESA/Gaia/DPAC/André Moitinho & Márcia Barros (CENTRA - University of Lisbon) Annotations: Francois Mignard (OCA Nice)

Gaia DR1 astrometry

DPAC/CU3/Lindegren et al., 2016, A&A

- (α, δ) for ~ 1.1 billion sources to G = 20.7
- Epoch J2015.0, alignment to ICRF < 0.1 mas, rotation < 0.03 mas yr⁻¹
- Typical position uncertainty ~ 10 mas
- Positions of 2191 ICRF sources from special astrometric solution (Mignard et al., 2016, A&A)
 - ▶ 90% with $\sigma_{\text{pos}} < 3.35$ mas
 - no systematic differences with radio positions of more than few tenths of mas

TGAS

Tycho-Gaia Astrometric Solution (Michalik et al., 2015, A&A)

- Use Hipparcos or Tycho-2 position as prior to disentangle parallax and proper motion
 - 2 million stars in common with these catalogues

Tycho-2

position

(~1991)

- 5-parameter astrometry from ~ 1 year of Gaia data
- No Hipparcos parallaxes used

TGAS

TGAS source density

TGAS median parallax uncertainty

DPAC/CU3/Lindegren et al., 2016, A&A

- Parallaxes and proper motions for ~ 2 million sources to $G \sim 11.5$ (TGAS)
- Realistic errors derived from Gaia-Hipparcos comparison
- Median position uncertainty ~ 0.3 mas
- Median parallax uncertainty ~ 0.3 mas; global zeropoint below ±0.1 mas; systematics at 0.3 mas level

DPAC/CU3/Lindegren et al., 2016, A&A

- Median TGAS proper motion uncertainty ~ 1.3 mas yr⁻¹ (semi-major axis error ellipse)
 - ▶ Hipparcos subset: ~ 0.07 mas yr⁻¹

Gaia DR1 Photometry

Error on the weighted mean G value for sources with ~ 100 CCD transits

TGAS HR diagram of the Hipparcos stars

Gaia Collaboration, Brown et al. 2016, A&A

TGAS full HR diagram

Full Gaia DR1 data set

- 1 million stars with parallaxes precise to $\leq 20\%$
- 90% inside 590 pc

Future

- ~ 10 million parallaxes precise to 1%
- ~ 150 million precise to 10%
- ~ 280 million precise to 20%

Gaia Collaboration, 2016, A&A

HR diagram & tangential velocity

HR diagram colour coded by tangential velocity

- 41136 stars with (B V) photometry selected according to: $G \le 7.5$ or $\mu \ge 200$ mas yr⁻¹ or $\varpi \ge 10 \text{ mas}$
- 90% inside 360 pc

Gaia DR1 Variable Stars

DPAC/CU7/Clementini et al., 2016, A&A

Gaia DR1 Variable stars

Gaia Collaboration, Clementini et al. 2016, A&A (in prep)

A first data release

- Gaia mission overview
- Gaia DR1 content
- Validations and limitations
 - Completeness
 - Astrometry
 - Photometry

Compromise needed for an early first data release

- Short observing period (14 months)
 - → Bright stars position prior (Hipparcos/Tycho)
- Calibration models not completed
 - → Bright stars affected
- Attitude and other un-modeled effects (basic angle)
 → Systematics
- Sub-optimal cross-match
- All sources treated as single stars

DR1 incompleteness

• Scanning law inhomogeneities

2MASS sources not found in DR1

60 1000 09 800 600 8 400 9 0 200 -30 -60 -90 -30180 120 90 60 30 0 -90 -150

• Worst incompleteness in dense regions

۲ LMC I I 6 Completeness (in %) • 80 ٠ 重 Ŧ 20 • ٠ . ٠ 60 8e+05 2e+05 4e+05 0e+00 6e+05 Density (stars/deg²)

Incompleteness : holes

Incompleteness: angular resolution

- On-board resolution as expected
- In DR1 low separation incompleteness

WDS double stars completeness vs separation

Incompleteness : colour effect

• Very blue and very red stars missing

OGLE bulge field

TGAS incompleteness

- Many bright stars missing
- High proper motion stars missing
- Cross-match issues

Duplicated sources remain

Parallaxe zero point and uncertainties versus external catalogues

Catalogue	Outliers	ϖ difference	ϖ extra dispersion
Hipparcos	0.09%	-0.094 ± 0.004	0.58 ± 0.005
VLBI	0/9	0.083 ± 0.12	
HST	2/19	-0.11 ± 0.19	0.6 ± 0.2
RECONS	0/13	-1.04 ± 0.58	-0.9 ± 0.5
VLBI & HST & RECONS	2/41	-0.08 ± 0.12	0.42 ± 0.13
Cepheids	0 / 207	-0.014 ± 0.014	-0.18 ± 0.01
RRLyrae	0/130	-0.07 ± 0.02	-0.16 ± 0.02
Cepheids & RRLyrae	0/337	-0.034 ± 0.012	-0.17 ± 0.01
RAVE	47 / 5144	0.07 ± 0.005	-0.06 ± 0.02
APOGEE	0/2505	-0.06 ± 0.006	-0.12 ± 0.01
LAMOST	6/317	-0.01 ± 0.02	-0.17 ± 0.02
PASTEL	1/218	0.05 ± 0.02	0.1 ± 0.05
APOKASC	0/969	-0.07 ± 0.009	-0.15 ± 0.01
LMC	2/142	0.11 ± 0.02	-0.14 ± 0.03
SMC	0 / 58	-0.12 ± 0.05	-0.09 ± 0.09
ICRF2 QSO auxiliary solution	1 / 2060	-0.046 ± 0.01	-0.17 ± 0.01

TGAS parallaxes versus Hipparcos

TGAS Parallaxes

QSO auxiliary (5-parameter) solution:

- 10% of the sky with $|\varpi| > 0.3$
- Mediane: 0.04 mas

- \rightarrow local systematics at the same level as the uncertainties :
- \rightarrow no \sqrt{N} improvement (e.g. clusters...)
- $\rightarrow \varpi = x \pm \sigma$ (rand.) \pm 0.3 (syst.) mas

TGAS proper motions versus Tycho-2

RA

TGAS correlations

Significant correlations between astrometric parameters, need to be taken into account

correlation parallax / pmra

DR1 correlations

- Extra correlations may be missing (attitude/calibration issues)
- Chi2 test shows increase of the global residuals with magnitude in the comparison with Hipparcos proper motions and QSOs positions

(not seen in the individual parameters residuals)

ecliptic longitude

How to detect problematic stars ?

- Binaires
- Visual pairs
- Calibration issues (PSF fit, attitude...)
 - \rightarrow excess noise
 - \rightarrow correlations, scanStrenght, nbobs...

Excess noise

DR1 photometry

• No filter model available for DR1

 \rightarrow photometric transformations provided in the release documentation

DR1 photometric outliers

Gaia versus Hipparcos photometry

Comparison with SDSS tertiary standards of Betoule et al. 2013

DR1 photometric systematics

Residuals of G-r from a global G-r=f(g-i) spline

DR1 photometric systematics

Residuals of G-G_{RP} from a global G-G_{RP}= $f(G_{BP}-G_{RP})$ spline

G

Data access

Main portal: http://archives.esac.esa.int/gaia

- Online documentation, VO compatible, TAP interface, visualization apps
- Pre-computed cross-match to large catalogues: UCAC4, 2MASS, SDSS, GSC2, WISE, PPMXL, URAT1

+

- Fast visualization and analysis entire DR1: http://vaex.astro.rug.nl
- Command line access: https://pypi.python.org/pypi/pygacs

Partner data centres

- CDS: http://cds.unistra.fr/gaia
- ASDC: http://gaiaportal.asdc.asi.it
- ARI: http://gaia.ari.uni-heidelberg.de
- AIP: http://gaia.aip.de

- Significant increase in the amount and precision of astrometry and photometry
- Preliminary data with issues to take into account in the exploitation
- Major improvements already planned for DR2 in \sim 1 year:
 - 1 billion parallaxes
 - Photometry G/G_{BP}/G_{RP}
 - Radial velocity for the brightest stars

- ...

Gaia: complete, faint, accurate

	Hipparcos	Gaia	
Magnitude limit	12 mag	20.7 mag	
Completeness	7.3 – 9.0 mag	20 mag	
Bright limit	0 mag	3 mag (assessment for brighter stars ongoing)	
Number of objects	120,000	47 million to G = 15 mag	
		360 million to G = 18 mag	
		1192 million to G = 20 mag	
Effective distance limit	1 kpc	50 kpc	
Quasars	1 (3C 273)	500,000	
Galaxies	None	1,000,000	
Accuracy	1 milliarcsec	7 μarcsec at G = 10 mag	
		26 µarcsec at G = 15 mag	
		600 µarcsec at G = 20 mag	
Photometry	2-colour (B and V)	Low-res. spectra to G = 20 mag	
Radial velocity	None	15 km s ⁻¹ to G _{RVS} = 16 mag	
Observing	Pre-selected	Complete and unbiased	

The Gaia Focal Plane

The bad surprises

- Perte de transmission due à la glace d'eau
 - Procédure de décontamination exécutée le 3 juin 2015, puis 22 août 2016
- Perturbations de l'attitude
 - Prise en compte des micro-météorites et micro-cliquetis dans le traitement
- Variation de l'angle de base plus élevée que prévu
 - Métrologie à bord
 - Vérification dans l'astrométrie
- Lumière diffusée du soleil et des sources astronomiques
 - Logiciel modifié pour la spectroscopie

Pleiades

- Pleiades distances not (yet?) incompatible with Hipparcos
- Other clusters in common with Hipparcos give coherent results