

Newtonian Noise (NN) @ low frequency

06/10/2016

Donatella Fiorucci^a, Jan Harms^b, Matteo Barsuglia^a

^aAstroparticule et Cosmologie (APC) ^bUniversità degli Studi di Urbino 'Carlo Bo'

EGRAAL meeting

Newtonian Noise (NN) in low frequency detectors (10mHz-1Hz)

Einstein Telescope (ET) → Frequency range ≈ 1Hz – 30Hz

Torsion bar antennae and other low frequency detectors (i.e. TOBA, TORPEDO, atom interferometers ...)

Frequency range ≈ 10 mHz-1Hz

Newtonian Noise (NN) in low frequency detectors (10mHz-1Hz)

Atmospheric NN main sources:

Quasi-static temperature perturbations
 Infrasound waves created by pressure fluctuations

Seismic NN main source:

Rayleigh waves

NN from objects:

Objects moving with constant speed

Infrasounf vs Seismic NN

Infrasound vs Seismic NN

Infrasound NN is higher than Seismic NN at low frequency (0.01Hz-1Hz)

Infrasounf vs Seismic NN

Underground attenuation factor

$$\exp(-h\,\omega/c_{IN/Rayleigh})$$

Rayleigh wave c_{IN}≈3.5 km/s @0.1 Hz

Infrasound wave c_{Infrasound} ≈340 m/s

Lower attenuation of Seismic NN than of Infrasound NN at low frequency 0.01Hz-1Hz

Issues on Infrasound NN

$$g_z(t)^* = \int \frac{Gz\delta\rho}{r^3} \, \mathrm{d}V = \frac{G\rho c}{\gamma p f} \cos(\theta) C(2\pi f r_{\min}/c) \delta p(t+1/4f)$$

Angle between the wave propagation direction and the interferometer arm

1) Effect of the building housing the test mass

 \rightarrow

2) Measurement of pressure fluctuations at infrasound frequencies

- How to perform the measures
- Where to take the measures

Building effect modeling

Considered geometry:

hemispheric building, 6m radius

spheric vacuum chamber of radius 1m ,
centered at xo=0m,yo=0m,zo=1.5m

Pressure fluctuations for the calculation of the ET IN NN

ET IN NN-Building effect

Infrasound NN TOBA

$$\delta \vec{g}_{12}(\omega) = -\nabla \psi(\vec{r}_2, \omega) + \nabla \psi(\vec{r}_1, \omega)$$

$$small \underline{test mass distance}$$

$$\approx -(\nabla \otimes \nabla \psi(\vec{r}_1, \omega)) \cdot \vec{r}_{12} *$$

$$h_{\mu\nu}(\vec{r}, \omega) = \frac{\nabla \otimes \nabla \psi(\vec{r}, \omega)}{\omega^2}$$

 $h_{\mu\nu}$ projection for the rotational strain measurement

$$h_{\times} \Longrightarrow S_{h_{\times}} = \sqrt{\langle h_{\times} h_{\times}^* \rangle}$$

• J. Harms, Terrestrial Gravity Fluctuations

Pressure fluctuations for the calculation of TOBA IN NN

Median noise model of the pressure fluctuations

Low noise model of the pressure fluctuations

High noise model of the pressure fluctuations

Moving objects NN in TOBA

$$\psi(\vec{r},t) = -\frac{Gm}{\sqrt{x^2(t) + y^2(t) + z^2(t)}}$$

x(t) = rlx + vlx(t-tl) y(t) = rly + vly(t-tl)z(t) = rlz + vlz(t-tl)

$$\ddot{h}_{\mu\nu} = -\nabla \otimes \nabla \psi(\vec{r},t) \longrightarrow \text{Gravity gradient}$$

Gravity gradient projection

$$\ddot{h}(\vec{r},t) = \left(\left((1 \ 0 \ 0), \ddot{h}_{\mu\nu} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right) - \left((0 \ 1 \ 0), \ddot{h}_{\mu\nu} \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} \right) \right) / 2$$

$$\ddot{h}(t) = \frac{3Gm(r1x + (v1x(t - t1)))(r1y + (v1y(t - t1)))}{((r1x + (v1x(t - t1)))^2 + (r1y + (v1y(t - t1)))^2 + (r1z + (v1z(t - t1)))^2)^{5/2}}$$

Moving objects NN in TOBA

Moving objects NN in TOBA 1.5×10⁻¹⁷ $G=6.67 \times 10^{-11} \text{ m}^3/\text{kg s}^2$ 1.×10⁻¹⁷ m= 1000 kg h(tr1x=300 m 5.×10⁻¹⁸ v1y=20 m/s t1=0s -100 -50 50 100 v1x=0 m/s t[s] v1z=0 m/s -5.×10⁻1 r1y=0 m -1.×10⁻¹⁷ r1z=1000 m -1.5×10⁻¹⁷ 1.5 10114 $G=6.67 \times 10^{-11} \text{ m}^3/\text{kg s}^2$ m= 1000 kg $\ddot{h}(t)$ r1x=0m 1.×10⁻¹⁴ v1y=14.14 m/s t1=0s v1x=14.14 m/s 5.×10⁻¹⁵ v1z=0 m/s r1y=0 m r1z=100 m t[s] -30 -20 -10 10 20 30 20

Earthquake prompt gravity perturbations

$$\delta \psi(\mathbf{r}_0, t) = -R_{\rm P}(\theta_0, \phi_0) \frac{3G}{r_0^3} I_2[M_0](t).^*$$

*Equation (12)-Geophys.J.Int.(2015)201,1416-1425

$$R_{p} = 2\frac{x}{\sqrt{x^{2} + y^{2} + z^{2}}}\frac{y}{\sqrt{x^{2} + y^{2} + z^{2}}}$$

• •

$$\psi(\vec{r},t) = -2\frac{x}{\sqrt{x^2 + y^2 + z^2}} \frac{y}{\sqrt{x^2 + y^2 + z^2}} \frac{3GI_2[Mo(t)]}{\left(\sqrt{x^2 + y^2 + z^2}\right)^3} \qquad I_2[Mo(t)] = \frac{Mot^5}{20}$$
$$Mo = 1.5 \times 10^{18} \,\mathrm{Nm}$$

$$\dot{h}_{\mu\nu} = -\nabla \otimes \nabla \psi(\vec{r},t)$$
$$\ddot{h}(\vec{r},t) = \left(\left((1 \ 0 \ 0) \cdot \ddot{h}_{\mu\nu} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right) - \left((0 \ 1 \ 0) \cdot \ddot{h}_{\mu\nu} \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} \right) \right) / 2$$

Earthquake vs Moving object gravity perturbations

Conclusions and Perspectives

Infrasound Noise:

- > Lower than 10^{-15} /VHz @0.1 Hz for median and low pressure fluctuation models
- Need for suitable microphones at low frequencies (e.g.≈ 10mHz)
- Characterization of the detector sites in terms of pressure fluctuations
- Building effect to be considered while modeling IN NN in the detector sites
 Seismic Noise:
- \blacktriangleright Lower than 10⁻¹⁵/VHz @0.1 Hz
- Possibility for efficient seismic NN cancellation

Moving objects at constant speed:

- Conditions can be found to have analogies with signal from earthquake prompt gravity perturbation
- it seems always possible to distinguish the earthquakes signal