Current Status of TOBA experiment at Univ. of Tokyo

Tomofumi Shimoda, Naoki Aritomi, Masaki Ando University of Tokyo

6 Oct. 2016 E-GRAAL 2nd meeting

Contents

Introduction

- overview & target of TOBA
- Next step : Phase-III TOBA
 - noise sources of Phase-III TOBA and reduction strategy
 - seismic noise / magnetic noise / sensor noise / thermal noise
- summary and future plan

Introduction

6 Oct. 2016 E-GRAAL 2nd meeting

TOrsion-Bar Antenna

- TOBA = a gravitational wave detector using a torsion pendulum
- sensitive to lower-frequency GWs because of low resonant frequency(~3mHz) of Yaw rotation

Principle

Gravitational Wave Detectors

Target of TOBA : gravitational wave

Gravitational Wave observation

- Intermediate Massive Black Hole binaries (within 1~10Gpc for $\,M{=}10^{3{\text{-}}5}\,M_{\text{sun}}$)

 \cdot stochastic GW background (upper limit on $\Omega_{\rm GW} < 10^{-7}$)

Phys. Rev. Lett. 106.161101

PhysRevLett. 105.161101

Target of TOBA : other measurements

Apply to other experiments

- as a gravity-gradiometer :
 - Newtonian Noise measurement
 - Earthquake early alert by detecting gravitational field fluctuation

- other tiny force measurements :
 - gravity inverse-square law
 - test for space missions
 - quantum noise measurement

TOBA sensitivity

IN NN TOBA z=100r

IN NN TOBA z=300m

Newtonian Noise

- Newtonian gravity fluctuation from fluctuation of seismic field & atomosphere
- Noise amplitude (GW strain equivalent) = $10^{-15} \sim 10^{-16} / Hz^{1/2} @0.1Hz$

Earthquake early alert

- density perturbation by earthquake generate gravitational field perturbation
 - ⇒ detectable with gravitational wave detectors
- GW strain equivalent signal level :

$$h(t) = \frac{6\sqrt{14/5} G}{r_0^5} I_4[M_0](t)$$

··· M6.0, $r_0 = 70 \text{km} \Rightarrow \frac{h \sim 10^{-15} / \text{Hz}^{1/2}}{10^{-15} / \text{Hz}^{1/2}}$

6 Oct. 2016 E-GRAAL 2nd meeting

Development history

Phase-I

(magnetic levitation) → h ~ 10⁻⁸ /Hz^{1/2} @0.1Hz

limited by ...

- magnetic noise
- seismic noise

Phase-II (wire suspension)

 \rightarrow h ~ 10⁻¹⁰ /Hz^{1/2} @5Hz

limited by ...

- sensor noise(fiber optics)
- seismic noise

Phase-III TOBA

6 Oct. 2016 E-GRAAL 2nd meeting

Next step: Phase-III TOBA

✓ understanding of noise sources completed ✓Proof of principle

✓Next : noise reduction & scientific observation

- direct detection of Newtonian noise
 early alert for big earthquakes
 nearby IMBH search (d<100kpc)

Phase-III TOBA Configuration

6 Oct. 2016 E-GRAAL 2nd meeting

Main noise sources for Phase-III TOBA

(simplified configuration)

Seismic noise

• Noise from seismic ground motion (δ x~10⁻⁶ m/Hz^{1/2} @0.1Hz)

Rotational seismic noise

- Vibration isolation with multi-stage torsion pendulum
- Requirement : $\delta \theta < 5 \times 10^{-16} \text{ rad/Hz}^{1/2}$

Active Vibration Isolation Table

- Passive isolation of translational seismic motion at 0.1Hz is very difficult
 - \Rightarrow <u>active isolation (AVIT)</u> (developped by A. Shoda)

performance will be limited by :
sensor nosie (~10⁻⁷ m/Hz^{1/2})
coupling from tilt
⇒ need to solve these problems

Cross-coupling noise ①

• from the tilt of mirrors on the test mass

Requirement : $(tilt) < 10^{-7} rad$

⇒ polished test mass

under evaluation

6 Oct. 2016 E-GRAAL 2nd meeting

Cross-coupling noise (2)

from other rotation via the tilt of the test mass ⇒adjust the tilt of the test mass

reduction was demonstrated now : $(tilt) \sim 100 \mu rad$ ⇒ need fine tuning

Magnetic noise

• Noise from fluctuation of the environmental magnetic field (via the magnetic dipole moments of the test mass)

magnetic moment μ :

- attatched magnets for actuator
- residual magnetization of test mass(not evaluated)

measured magnetic field fluctuation : required magnetic moment :

$$B = 1.0 \times 10^{-8} \left(\frac{0.1 \text{ Hz}}{f} \right) \text{ T/}\sqrt{\text{Hz}} \rightarrow \mu < 6 \times 10^{-11} \text{ A} \cdot \text{m}^2$$

cannot use magnets

⇒ develop new actuator : Coil-Coil actuator

Coil-Coil actuator

6 Oct. 2016 E-GRAAL 2nd meeting

• magnetic interaction between drive AC current and induced current

Coil-Coil actuator is already available (succeeded to control TOBA)

actuator noise is under evaluation

Magnetic noise with Coil-Coil actuator

• magnetic moment of the test mass changes in drive frequency $(\omega_{\rm d}/2\,\pi\,{\sim}10{\rm kHz})$

 $\mu \propto I_0 \propto \sin(\omega_d t)$

⇒ magnetic field fluctuation around ω_{d} will be downconverted into torque noise at 0.1Hz

$$N = \mu \times B \propto \sin(\omega_d t) \times \sin(\omega t) \sim \sin(\omega_d - \omega) t$$

fluctuation of B may be smaller at higher frequency & easire to shield ⇒ lower torque noise than coil-magnet actuator

Xactual magnetic field fluctuation is not measured yet

Sensor noise

• Noise from vibration of optical components(mirror, beam splitter, ...)

⇒ reduce vibration of mirrors: develop monolithic optics

6 Oct. 2016 E-GRAAL 2nd meeting

Monolithic optics

mirrors are directly bonded on the plate
 ⇒ responce to vibration is reduced

without mirror mount

M. Dehne, Doctral thesis (2012)

Progress

- first prototype was made (by N. Aritomi & F. Donatella)
- current sensitivity : δ x ~ 1 × 10⁻¹² m/Hz^{1/2} @0.1Hz

(requirement : $1 \times 10^{-16} \text{ m/Hz}^{1/2}$)

• Noise sources are under investigation

Suspension thermal noise

Noise from thermal fluctuation through a suspension wire

$$\delta\theta = \sqrt{\frac{k_B T}{2\pi^3} \frac{f_0^2 \phi}{I f^5}}$$

T: temperature f_0 : resonant freq. ϕ : mechanical loss of wire I: moment of inertia

6 Oct. 2016 E-GRAAL 2nd meeting

Requirement (in the case of I=0.06, $f_0=2mHz$): T < 4K & $\phi < 3 \times 10^{-8}$

 \Rightarrow cooling & low loss wire

- construct cryogenic system
 material search for the wire (silicon, sapphire, fused silica,...)

Summary

6 Oct. 2016 E-GRAAL 2nd meeting

Summary of Phase-III TOBA Configuration

Summary of progress

noise source	reduction method & requirement	current status	residual task	
seismic noise	vibration isolation	design completed partly constructed	full construction & evaluation	
	polished test mass	available	evaluation	
	tilt adjustment	demonstrated	fine tuning	
magnetic noise	coil-coil actuator	available	noise estimation	
sensor noise	monolithic optics	first prototype was made	noise hunting	
suspesion thermal noise	cooling low-loss wire	not yet	all	

Future plan (rough)

	2016	2017		2018			2019~		
rotational isolation				constr evalu <i>a</i>	uction ition	ı &			
cross-coupling reduction	test polished test mass fine tilt adjustment								
coil-coil actuator	noise estima	ation							
monolithic optics	noise hunting & sensitivity improvement								
suspension thermal noise						construct cryogenic system wire material search			

Thank you for listening

6 Oct. 2016 E-GRAAL 2nd meeting