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Detection Principle
Detector Layout

Figure 1: An artist’s impression of the KM3NeT telescope array.
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Detection Principle
Deployment

Figure 2:  The optical module launching vehicle (LOM) on the boat and
during unfurling.
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The Next Generation of Undersea Neutrino Detectors

ARCA and ORCA

ARCA - ltaly
@ 2 building blocks of 115 lines of 18 DOMs

@ 90m horizontal spacing between lines and 36m vertical
spacing between DOMs

@ High energy cosmic neutrinos (102 — 108 GeV)
ORCA - France
@ 1 building block of 115 lines of 18 DOMs

@ 25m horizontal spacing between lines and 9m vertical spacing
between DOMs

@ Neutrino mass hierarchy measurement and low energy
neutrino astronomy (1 — 100 GeV)
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CPPM Efforts
Deployment

Figure 3: The first ORCA line (left) and the node (right), here at
CPPM.
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Measuring the NMH

Neutrino Oscillations in Vacuum

Vacuum Transition Probabilities
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Measuring the NMH
The MFW Effect

Due to charged-current elastic scattering interactions with the
electrons in matter, it acquires an effective potential

A= +V2GgN.,.

cos(6,) =- 0.6
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Figure 4: Oscillation probabilities v, — v, (blue) and ve — v, as a

function of neutrino energy for various zenith angles. The NH (IH) is
solid (dashed) and the (anti)neutrinos are on the left (right).
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Motivation and Background

Zenith and Energy Asymmetry
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Figure 5:  The NMH assymetry, defined as N’”N;N':’V” for v + v charged
current interactions as a function of neutrino energy and cosine zenith
angle. Electron neutrinos are on the left and muon neutrinos are on the

right. Energy is smeared by 25% and the angle is smeared by %
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Sensitivity
After 3 years
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Figure 6: The projected NMH sensitivity for a 115 string ORCA
detector, after 3 years, as a function of 653.
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Reconstruction
Muon Tracks

Figure 7:  The topography of v, CC interactions in the detector.
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Reconstruction
Track

Prefit Initially, there are 7 quantities to fit,
{x,y,2,0x,0y,0z,t}
@ If you assume a given direction, this reduces
down to just {x,y,t}
@ Take 3600 hypothetical directions all over the
sky and then pick the best 12

. . . ... (ttrue_tex ec ed)2
M-Estimator Find the track which minimises .. "3~
@ Uses Nelder-Mead minimisation, doesn't use
gradient
PDF Fit Incorporates all the known information about the
track and detector response
@ Find the track which minimises
—log ,C(hits|5t, R, 0pm, gf)pMT)
@ Uses the Levenberg-Marquandt algorithm
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Track Fitting

Angular Resolution

Angular Resolution
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Figure 8: Improved angular resolution on the Lol. Quality cuts were
chosen to give the same number of reconstructed events.
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Reconstruction
Energy

@ Below 100 GeV, dE“ 0.24% - ionisation dominated

e Muon energy is Imearly related to track length
o Use the hadronic shower to find the track start

@ Hadronic states vary, but energy can be fitted using the total
light yield
e Currently, an empirical correction is applied as a function of
the total number of hits
e There is, however, potential to isolate and fit the hadronic
shower
o y= EVE“ can also be used to statistically separate neutrinos
and antineutrinos
o N, x1

1
o Nlj X o102
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Vertex Fitting

Performance

0.0<y<1.0

14 — My Method
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Figure 9: Median vertex error for vertices reconstructed inside the
detector, quality cuts chosen for equivalent efficiency.
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Vertex Fitting

Performance

0.0<y<0.25

14 — My Method

12 — Reco-LNS
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Figure 10: Median vertex error for vertices reconstructed inside the
detector, 0 < y < 0.25, quality cuts chosen for equivalent efficiency.
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Reconstruction

Currect Energy Reconstruction

Currently, once the muon energy is found, one of two empirical
corrections is applied based on the number of selected hits.
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Figure 11: My final correction to the reconstructed muon energy for
y < 0.5 (left) and y > 0.5 (right)
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Reconstruction

Energy Resolution

KM3NeT/ORCA Energy Resolution in the Track Channel
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Figure 12:  The current median energy resolution for v, CC events as a
function of energy.
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Reconstruction

Track and Shower Separation

Hit Distribution for Muon Tracks Hit Distribution for Hadronic Showers
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Figure 13:  The spatial distribution of track (left) and shower (right) hits
with respect to the muon track along the z axis, with the interaction
vertex at the origin. Events are taken from the KM3NeT ORCA
Montecarlo, in the 3-30GeV range.
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Reconstruction
Separation Procedure

Using the spatial distributions shown above, as well as the
expected time distribution, we can define:

Eshower
Etrack + Eshower + »CK4O

W =

and then try to find a function F such that

nhits

Eshovver =F Z Wi
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Reconstruction

Separation Performance

Best Possible Track and Shower Separation
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Figure 14: Cumulative plot of confidence that a hit came from a shower
and not from the track or K40, in the most optimistic case.
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Conclusions

Done
@ Created a vertex fit for muon tracks in ORCA
@ Created a simple neutrino energy reconstruction
In Process

o Identify the light yield from the hadronic shower and fit its
energy separately

In Future
@ Try to fit the shower direction
o Study the effect of the bjorken y = (E”E;UE“) information on
the NMH
@ If possible, create simultaneous track and shower fit
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